
T E C H N I C A L R E P O RT S I N C O M P U T E R S C I E N C E

Technische Universität Dortmund

Proceedings of the

16th International Workshop
on Non-Monotonic Reasoning

(NMR 2016)

April 22 – 24, 2016

Cape Town, South Africa

Editors:
Gabriele Kern-Isberner, Lehrstuhl Informatik 1, Technische Universität Dortmund

Renata Wassermann, Computer Science Department, University of São Paulo

Number: 852

Technische Universität Dortmund — Fakultät für Informatik
Otto-Hahn-Str. 14, 44227 Dortmund

Gabriele Kern-Isberner, Renata Wassermann (Editors), Proceedings of the 16th
International Workshop on Non-Monotonic Reasoning (NMR 2016), Cape Town,
South Africa; April 22 – 24, 2016. ©2016.

G a b r i e l e K e r n - I s b e r n e r, R e n a t a W a s s e r m a n n : P R E FA C E

Nonmonotonicity is crucial for any formal approach to modelling human rea-
soning – most of the conclusions we draw in our everyday lives and on which
we base (sometimes important) decisions are defeasible, prone to be given up
if further information arrives. This is in clear contrast to classical – e.g., propo-
sitional or first-order – logics which are monotonic, i.e., their deductive con-
clusions are preserved for eternity. It is due to monotonicity that all (correct)
proofs in mathematics are still valid, regardless of whatever new theories are
being developed, but also that robots based on classical logics fail in uncertain,
incompletely specified environments.

Therefore, nonmonotonic reasoning (NMR) deals with important issues in
Artificial Intelligence, and has strong connections to other areas of knowledge
representation, in particular, to belief revision, action logics, argumentation,
logic programming, preference handling, and uncertain reasoning. The NMR
workshops are the premier forum for presenting results in this broad subfield
of knowledge representation and reasoning (KR). Their aim is to bring together
active researchers, and foster discussions and collaborations on theoretical foun-
dations, applications, and system development.

NMR has a long history – it started in 1984, and is held every two years.
Recent previous NMR workshops took place in Vienna (2014), Rome (2012),
Toronto (2010), and Sydney (2008). Following established and fruitful traditions,
NMR 2016 was co-located with the 15th International Conference on Principles
of Knowledge Representation and Reasoning (KR 2016) and the 29th International
Workshop on Description Logics (DL 2016). In particular, NMR 2016 shared a joint
session with DL 2016. We were happy to welcome Laura Giordano (Universitá
del Piemonte Orientale) and Leon van der Torre (University of Luxembourg) as
invited speakers, Laura’s talk was also invited by DL 2016.

This volume contains most of the accepted papers of NMR 2016. Some pa-
pers had been already published, or are meant to be published elsewhere, so
we could only provide URL’s in those cases. This collection of NMR papers
illustrate impressively both the depth and the breadth of NMR by dealing with
theoretical issues as well as connecting different subfields of knowledge repre-
sentation and reasoning.

In Studies on Brutal Contraction and Severe Withdrawal: Preliminary Report, Marco
Garapa, Eduardo Fermé, and Maurício Reis study different classes of con-
traction operators and provide axiomatic characterizations for them. Zhiqiang
Zhuang, James Delgrande, Abhaya Nayak, and Abdul Sattar deal with inter-
leaving two kinds of nonmonotonicity: in their paper A New Approach for Re-
vising Logic Programs, they also allow the logic underlying belief revision op-
erations to be nonmonotonic. Also Aaron Hunter’s paper Ordinal Conditional
Functions for Nearly Counterfactual Revision considers an interesting and often
neglected issue in belief revision: How can revision by (nearly) counterfactual
conditionals be carried out?

Two papers study belief revision in a probabilistic environment: Gavin Rens
proposes a unified model of quantitative belief change in his paper On Stochas-

iii

tic Belief Revision and Update and their Combination, and together with Thomas
Meyer and Giovanni Casini, he also contributes to this volume by Revising In-
completely Specified Convex Probabilistic Belief Bases. Moreover, another two pa-
pers deal with connections between nonmonotonic reasoning and belief revi-
sion, on the one hand, and ontological reasoning, on the other hand: Özgür
Özçep considers Iterated Ontology Revision by Reinterpretation, and Valentina
Gliozzi focusses on typicality operators in her paper A strengthening of ratio-
nal closure in DLs: reasoning about multiple aspects.

One of the most basic ideas of nonmonotonic reasoning is to order mod-
els or states by preference relations. In Preferential Modalities Revisited, Katarina
Britz and Ivan Varzinczak apply such semantic preference relations to modal
accessibility relations, while Kristijonas C̆yras and Francesca Toni consider pref-
erences in assumption-based argumentation (ABA) frameworks in their paper
Properties of ABA+ for Non-Monotonic Reasoning. Jesse Heyninck and Christian
Straßer also emphasize the strong Relations between assumption-based approaches
in nonmonotonic logic and formal argumentation. Ringo Baumann, Thomas Lins-
bichler, and Stefan Woltran deal with Verifiability of Argumentation Semantics
by elaborating on which specific information some well-known semantics of
abstract argumentation systems can be based. Jean-Guy Mailly’s paper Using
Enthymemes to Fill the Gap between Logical Argumentation and Revision of Abstract
Argumentation Frameworks is a first approach to tackle the problem that agents
cannot decode arguments correctly due to missing or different (background)
knowledge. Thomas Linsbichler, Jörg Pührer, and Hannes Strass aim at Char-
acterizing Realizability in Abstract Argumentation by presenting algorithmic ap-
proaches that are apt to build up knowledge bases of arguments from a given
set of interpretations. A somehow dual problem is considered in the context of
belief merging in the paper Distributing Knowledge into Simple Bases by Adrian
Haret, Jean-Guy Mailly, and Stefan Woltran: How can a knowledge base arise
by merging simpler knowledge bases in a given fragment of classical logic?

Zeynep Saribatur and Thomas Eiter present a high-level representation for-
malism that can be applied to model Reactive Policies with Planning for Action
Languages. In his extended abstract, Zoltán Ésik studies Equational properties of
stratified least fixed points associated with logic programs. Adrian Paschke and
Tara Athan show in their paper Law Test Suites for Semantically-Safe Rule Inter-
change how basic principles of nonmonotonic reasoning can be adapted to ver-
ify a particular semantics. In Static and Dynamic Views on the Algebra of Modular
Systems, Eugenia Ternovska elaborates on properties of a knowledge represen-
tation framework called Algebra of Modular Systems; in particular, she uses
the algebra for a high-level encoding of problem solving on graphs.

iv

A C K N O W L E D G M E N T S

First of all, we would like to thank the members of our Program Committee
who provided us with excellent reviews on time. We are also grateful to the
South African Department of Science and Technology (DST), the Council for
Scientific and Industrial Research (CSIR) in South Africa, The South African
Centre for Artificial Intelligence Research (CAIR), Principles of Knowledge
Representation and Reasoning, Incorporated (KR, Inc.), and the European As-
sociation for Artifical Intelligence (EurAI, formerly ECCAI) for supporting our
workshop by donations. The team of local organizers – Tommie Meyer in the
first place – did a perfect job to help us making NMR 2016 a great event, thanks
to all of them.

Last, but not least, we wish to thank Christian Eichhorn who took care of the
NMR 2016 website and set up these proceedings, and the Technische Univer-
sität Dortmund where the proceedings were published as a technical report of
the Faculty of Computer Science.

P R O G R A M C O M M I T T E E O F N M R 2 0 1 6

Gabriele Kern-Isberner, Technische Universität Dortmund (Co-Chair)
Renata Wassermann, University of São Paulo (Co-Chair)
Christoph Beierle, University of Hagen
Alexander Bochman, Holon Institute of Technology
Gerhard Brewka, Leipzig University
Jan Broersen, Utrecht University
Marina De Vos, University of Bath
Marc Denecker, K.U.Leuven
Juergen Dix, Clausthal University of Technology
Paul Dunne, University of Liverpool
Wolfgang Faber, University of Huddersfield
Eduardo Fermé, Universidade da Madeira
Martin Gebser, University of Potsdam
Michael Gelfond, Texas Tech University
Valentina Gliozzi, Universitá di Torino
Lluis Godo, Artificial Intelligence Research Institute, Barcelona
Sven Ove Hansson, Royal Institute of Technology, Stockholm
Andreas Herzig, Université Paul Sabatier, Toulouse
Anthony Hunter, University College London
Katsumi Inoue, National Institute of Informatics, Japan
Tomi Janhunen, Aalto University
Sébastien Konieczny, Université d’Artois
Gerhard Lakemeyer, Aachen University of Technology
Thomas Lukasiewicz, University of Oxford
Maria Vanina Martinez, Universidad Nacional del Sur (Bahia Blanca)
Thomas Meyer, University of Cape Town

v

Nir Oren, University of Aberdeen
Maurice Pagnucco, The University of New South Wales
Odile Papini, Aix-Marseille Université
Pavlos Peppas, University of Technology, Sydney
Laurent Perrussel, Université de Toulouse
Ramon Pino Perez, Universidad de Los Andes
Henri Prade, Université Paul Sabatier, Toulouse
Ken Satoh, National Institute of Informatics, Japan
Luigi Sauro, University of Naples "Federico II"
Steven Schockaert, Cardiff University
Gerardo Simari, Universidad Nacional del Sur (Bahia Blanca)
Guillermo Simari, Universidad Nacional del Sur (Bahia Blanca)
Hannes Strass, Leipzig University
Heiner Stuckenschmidt, University of Mannheim
Evgenia Ternovska, Simon Fraser University
Matthias Thimm, Universität Koblenz-Landau
Mirek Truszczynski, University of Kentucky
Ivan Varzinczak, Universidade Federal do Rio de Janeiro
Joost Vennekens, K.U. Leuven
Serena Villata, INRIA Sophia Antipolis
Kewen Wang, Griffith University
Emil Weydert, University of Luxembourg
Stefan Woltran, TU Wien

vi

C O N T E N T S

Invited Talks

Laura Giordano: Reasoning about typicality in preferential
description logics . 1

Leon van der Torre: Arguing about obligations and permissions 3

Regular Papers

Ringo Baumann, Thomas Linsbichler and Stefan Woltran: Verifiability
of Argumentation Semantics . 5

Katarina Britz, Ivan Varzinczak: Preferential Modalities Revisited 15

Kristijonas Čyras, Francesca Toni: Properties of ABA+ for
Non-Monotonic Reasoning . 25

Zoltan Esik: Equational properties of stratified least fixed points 35

Marco Garapa, Eduardo Fermé, Maurício D. L. Reis: Studies on Brutal
Contraction and Severe Withdrawal: Preliminary Report 37

Valentina Gliozzi: A strengthening of rational closure in DLs:
reasoning about multiple aspects .47

Adrian Haret, Jean-Guy Mailly and Stefan Woltran: Distributing
Knowledge into Simple Bases . 55

Jesse Heyninck, Christian Straßer: Relations between assumption-based
approaches in nonmonotonic logic and formal argumentation.65

Aaron Hunter: Ordinal Conditional Functions for Nearly
Counterfactual Revision. .77

Thomas Linsbichler, Jörg Pührer, Hannes Strass: Characterizing
Realizability in Abstract Argumentation . 85

Jean-Guy Mailly: Using Enthymemes to Fill the Gap between
Logical Argumentation and Revision of Abstract Argumentation
Frameworks . 95

Özgür L. Özçep: Iterated Ontology Revision by Reinterpretation . . . 105

vii

viii contents

Adrian Paschke and Tara Athan: Law Test Suites for Semantically-Safe
Rule Interchange . 115

Gavin Rens: On Stochastic Belief Revision and Update and their
Combination . 123

Gavin Rens, Thomas Meyer, Giovanni Casini: Revising Incompletely
Specified Convex Probabilistic Belief Bases . 133

Zeynep G. Saribatur and Thomas Eiter: Reactive Policies with
Planning for Action Languages . 143

Eugenia Ternovska: Static and Dynamic Views on the Algebra of
Modular Systems . 153

Zhiqiang Zhuang, James Delgrande, Abhaya Nayak, Abdul Sattar: A
New Approach for Revising Logic Programs . 163

Reasoning about typicality in preferential description logics

Laura Giordano
Dipartimento di Scienze e Innovazione Tecnologica

Istituto di Informatica
Università del Piemonte Orientale

laura.giordano@uniupo.it

Abstract

The talk presents an approach for reasoning about typicality in description logics (DLs), based on Kraus, Lehmann and
Magidor’s preferential semantics. It describes an extension to DLs of Lehmann and Magidor’s rational closure as well as a
semantic characterization for it through a minimal model semantics. For expressive description logics, the computation of
rational closure can exploit a polynomial encoding of preferential entailment into standard DLs. The talk aims at discussing
to what extent preferential reasoning can be considered as a building block for dealing with exceptions in OWL ontologies,
considering that dealing with exceptions is a long standing problem of nonmonotonic reasoning, and at comparing this
approach with other approaches to defeasible reasoning in DLs.

1

Arguing about obligations and permissions

Leon van der Torre
University of Luxembourg

Abstract

In this talk I apply a theory of structured argumentation to normative reasoning. In an ASPIC+ style setting, I discuss the
definition of argument and attack, the role of constitutive and permissive norms, and hierarchical normative systems.
Based on joint work with Beishui Liao, Nir Oren, Gabriella Pigozzi and Serena Villata.

3

Verifiability of Argumentation Semantics∗

Ringo Baumann
Leipzig University

Germany

Thomas Linsbichler and Stefan Woltran
TU Wien
Austria

Abstract

Dung’s abstract argumentation theory is a widely used
formalism to model conflicting information and to draw
conclusions in such situations. Hereby, the knowledge
is represented by so-called argumentation frameworks
(AFs) and the reasoning is done via semantics extract-
ing acceptable sets. All reasonable semantics are based
on the notion of conflict-freeness which means that ar-
guments are only jointly acceptable when they are not
linked within the AF. In this paper, we study the ques-
tion which information on top of conflict-free sets is
needed to compute extensions of a semantics at hand.
We introduce a hierarchy of so-called verification classes
specifying the required amount of information. We show
that well-known standard semantics are exactly verifiable
through a certain such class. Our framework also gives a
means to study semantics lying inbetween known seman-
tics, thus contributing to a more abstract understanding
of the different features argumentation semantics offer.

Introduction
In the late 1980s the idea of using argumentation to model
nonmonotonic reasoning emerged (see (Loui 1987; Pollock
1987) as well as (Prakken and Vreeswijk 2002) for excel-
lent overviews). Nowadays argumentation theory is a vibrant
subfield of Artificial Intelligence, covering aspects of knowl-
edge representation, multi-agent systems, and also philosoph-
ical questions. Among other approaches which have been
proposed for capturing representative patterns of inference
in argumentation theory (Besnard et al. 2014), Dung’s ab-
stract argumentation frameworks (AFs) (Dung 1995) play
an important role within this research area. At the heart of
Dung’s approach lie the so-called argumentation semantics
(cf. (Baroni, Caminada, and Giacomin 2011) for an excellent
overview). Given an AF F , which is set-theoretically just
a directed graph encoding arguments and attacks between
them, a certain argumentation semantics σ returns accept-
able sets of arguments σ(F), so-called σ-extensions. Each of
these sets represents a reasonable position w.r.t. F and σ.

Over the last 20 years a series of abstract argumentation
semantics were introduced. The motivations of these seman-
tics range from the desired treatment of specific examples to
∗This research has been supported by DFG (project BR 1817/7-

1) and FWF (projects I1102 and P25521).

fulfilling a number of abstract principles. The comparison via
abstract criteria of the different semantics available is a topic
which emerged quite recently in the community ((Baroni
and Giacomin 2007b) can be seen as the first paper in this
line). Our work takes a further step towards a comprehensive
understanding of argumentation semantics. In particular, we
study the following question: Do we really need the entire AF
F to compute a certain argumentation semantics σ? In other
words, is it possible to unambiguously determine acceptable
sets w.r.t. σ, given only partial information of the underlying
framework F . In order to solve this problem let us start with
the following reflections:

1. As a matter of fact, one basic requirement of almost all ex-
isting semantics1 is that of conflict-freeness, i.e. arguments
within a reasonable position are not allowed to attack each
other. Consequently, knowledge about conflict-free sets is
an essential part for computing semantics.

2. The second step is to ask the following: Which informa-
tion on top on conflict-free sets has to be added? Imagine
the set of conflict-free sets given by {∅, {a}, {b}}. Con-
sequently, there has to be at least one attack between a
and b. Unfortunately, this information is not sufficient to
compute any standard semantics (except naive extensions,
which are defined as ⊆-maximal conflict-free sets) since
we know nothing precise about the neighborhood of a and
b. The following three AFs possess exactly the mentioned
conflict-free sets, but differ with respect to other

aF : b aG : b aH : b

3. The final step is to try to minimize the added informa-
tion. That is, which kind of knowledge about the neighbor-
hood is somehow dispensable in the light of computation?
Clearly, this will depend on the considered semantics. For
instance, in case of stage semantics (Verheij 1996), which
requests conflict-free sets of maximal range, we do not
need any information about incoming attacks. This infor-
mation can not be omitted in case of admissible-based
semantics since incoming attacks require counterattacks.

The above considerations motivate the introduction of so-
called verification classes specifying a certain amount of

1See (Jakobovits and Vermeir 1999; Arieli 2012; Grossi and
Modgil 2015) for exemptions.

5

information. In a first step, we study the relation of these
classes to each other. We therefore introduce the notion of
being more informative capturing the intuition that a certain
class can reproduce the information of an other. We present
a hierarchy w.r.t. this ordering. The hierarchy contains 15
different verification classes only. This is due to the fact
that many syntactically different classes collapse to the same
amount of information.

We then formally define the essential property of a seman-
tics σ being verifiable w.r.t. a certain verification class. We
present a general theorem stating that any rational semantics
is exactly verifiable w.r.t. one of the 15 different verification
classes. Roughly speaking, a semantics is rational if attacks
inbetween two self-loops can be omitted without affecting
the set of extensions. An important aside hereby is that even
the most informative class contains indeed less information
than the entire framework by itself.

In this paper we consider a representative set of standard
semantics. All of them satisfy rationality and thus, are ex-
actly verifiable w.r.t. a certain class. Since the theorem does
not provide an answer to which verification class perfectly
matches a certain rational semantics we study this problem
one by one for any considered semantics. As a result, only
6 different classes are essential to classify the considered
standard semantics.

In the last part of the paper we study an application of
the concept of verifiability. More precisely, we address the
question of strong equivalence for semantics lying inbetween
known semantics, so-called intermediate semantics. Strong
equivalence is the natural counterpart to ordinary equivalence
in monotonic theories (see (Oikarinen and Woltran 2011;
Baumann 2016) for abstract argumentation and (Maher
1986; Lifschitz, Pearce, and Valverde 2001; Turner 2004;
Truszczynski 2006) for other nonmonotonic theories). We
provide characterization theorems relying on the notion of
verifiability and thus, contributing to a more abstract under-
standing of the different features argumentation semantics
offer. Besides these main results, we also give new char-
acterizations for strong equivalence with respect to naive
extensions and strong admissible sets.

Preliminaries
An argumentation framework (AF) F = (A,R) is a directed
graph whose nodes A ⊆ U (with U being an infinite set of
arguments, so-called universe) are interpreted as arguments
and whose edges R ⊆ A × A represent conflicts between
them. We assume that all AFs possess finitely2 many argu-
ments only and denote the collection of all AFs by A . If
(a, b) ∈ R we say that a attacks b. Alternatively, we write
a � b as well as, for some S ⊆ A, a � S or S � b if
there is some c ∈ S attacked by a or attacking b, respectively.
An argument a ∈ A is defended by a set S ⊆ A if for each
b ∈ A with b� a, S � b. We define the range of S (in F)
as S+

F = S ∪ {a | S � a}. Similarly, we use S−F to denote
the anti-range of S (in F) as S ∪ {a | a� S}. Furthermore,

2Finiteness of AFs is a common assumption in argumentation
papers. A systematic study of the infinite case has begun quite
recently (cf. (Baumann and Spanring 2015) for an overview).

we say that a set S is conflict-free (in F) if there is no argu-
ment a ∈ S s.t. S � a. The set of all conflict-free sets of an
AF F is denoted by cf(F). For an AF F = (B,S) we use
A(F) and R(F) to refer to B and S, respectively. Further-
more, we use L(F) = {a | (a, a) ∈ R(F)} for the set of all
self-defeating arguments. Finally, we introduce the union of
AFs F and G as F ∪G = (A(F) ∪A(G), R(F) ∪R(G)).

Semantics
A semantics σ assigns to each F = (A,R) a set σ(F) ⊆ 2A

where the elements are called σ-extensions. Numerous se-
mantics are available. Each of them captures different in-
tuitions about how to reason about conflicting knowledge.
We consider σ ∈ {ad, na, stb, pr, co, gr, ss, stg, id, eg} for
admissible, naive, stable, preferred, complete, grounded,
semi-stable, stage, ideal, and eager semantics (Dung 1995;
Caminada, Carnielli, and Dunne 2012; Verheij 1996; Dung,
Mancarella, and Toni 2007; Caminada 2007).

Definition 1. Given an AF F = (A,R) and let S ⊆ A.

1. S ∈ ad(F) iff S ∈ cf(F) and each a ∈ S is defended
by S,

2. S ∈ na(F) iff S ∈ cf(F) and there is no S′ ∈ cf(F) s.t.
S (S′,

3. S ∈ stb(F) iff S ∈ cf(F) and S+
F = A,

4. S ∈ pr(F) iff S ∈ ad(F) and there is no S′ ∈ ad(F) s.t.
S (S′,

5. S ∈ co(F) iff S ∈ ad(F) and for any a ∈ A defended
by S, a ∈ S,

6. S ∈ gr(F) iff S ∈ co(F) and there is no S′ ∈ co(F) s.t.
S′ (S,

7. S ∈ ss(F) iff S ∈ ad(F) and there is no S′ ∈ ad(F) s.t.
S+
F (S′+F ,

8. S ∈ stg(F) iff S ∈ cf(F) and there is no S′ ∈ cf(F) s.t.
S+
F (S′+F ,

9. S ∈ id(F) iff S ∈ ad(F), S ⊆ ⋂ pr(F) and there is no
S′ ∈ ad(F) satisfying S′ ⊆ ⋂ pr(F) s.t. S (S′,

10. S ∈ eg(F) iff S ∈ ad(F), S ⊆ ⋂ ss(F) and there is no
S′ ∈ ad(F) satisfying S′ ⊆ ⋂ ss(F) s.t. S (S′.

For two semantics σ, τ we use σ ⊆ τ to indicate that
σ(F) ⊆ τ(F) for each AF F ∈ A . If we have ρ ⊆ σ and
σ ⊆ τ for semantics ρ, σ, τ , we say that σ is ρ-τ -intermediate.
Well-known relations between semantics are stb ⊆ ss ⊆
pr ⊆ co ⊆ ad, meaning, for instance, that ss is stb-pr -
intermediate.

Definition 2. We call a semantics σ rational if self-loop-
chains are irrelevant. That is, for every AF F it holds that
σ(F) = σ(F l), where F l = (A(F), R(F) \ {(a, b) ∈
R(F) | (a, a), (b, b) ∈ R(F), a 6= b}).

Indeed, all semantics introduced in Definition 1 are ratio-
nal. A prominent semantics that is based on conflict-free sets,
but is not rational is the cf2-semantics (Baroni, Giacomin,
and Guida 2005), since here chains of self-loops can have an
influence on the SCCs of an AF (see also (Gaggl and Woltran
2013)).

6 verifiability of argumentation semantics

Equivalence and Kernels
The following definition captures the two main notions of
equivalence available for non-monotonic formalisms, namely
ordinary (or standard) equivalence and strong (or expan-
sion) equivalence. A detailed overview of equivalence notion
including their relations to each other can be found in (Bau-
mann and Brewka 2013; 2015).

Definition 3. Given a semantics σ. Two AFs F and G are

• standard equivalent w.r.t. σ (F ≡σ G) iff σ(F) = σ(G),
• expansion equivalent w.r.t. σ (F ≡σE G) iff for all AFs H :
F ∪H ≡σ G ∪H

Expansion equivalence can be decided syntactically via
so-called kernels (Oikarinen and Woltran 2011). A kernel
is a function k : A 7→ A mapping each AF F to another
AF k(F) (which we may also denote as F k). Consider the
following definitions.

Definition 4. Given an AF F = (A,R) and a semantics σ.
We define σ-kernels F k(σ) =

(
A,Rk(σ)

)
whereby

Rk(stb) = R \ {(a, b) | a 6= b, (a, a) ∈ R},
Rk(ad) = R \ {(a, b) | a 6= b, (a, a) ∈ R,

{(b, a), (b, b)} ∩R 6= ∅},
Rk(gr) = R \ {(a, b) | a 6= b, (b, b) ∈ R,

{(a, a), (b, a)} ∩R 6= ∅},
Rk(co) = R \ {(a, b) | a 6= b, (a, a), (b, b) ∈ R}.

We say that a relation ≡ ⊆ A × A is characterizable
through kernels if there is a kernel k , s.t. F ≡ G iff F k = Gk.
Moreover, we say that a semantics σ is compatible with a
kernel k if F ≡σE G iff F k = Gk. All semantics (except
naive semantics) considered in this paper are compatible with
one of the four kernels introduced above. In the next section,
we will complete these results taking naive semantics and
strong admissible sets into account.

Theorem 1. (Oikarinen and Woltran 2011; Baumann and
Woltran 2014) For any AFs F and G ,

1. F ≡σE G ⇔ F k(σ) = Gk(σ) with σ ∈ {stb, ad, co, gr},
2. F ≡τE G ⇔ F k(ad) = Gk(ad) with τ ∈ {pr , id , ss, eg},
3. F ≡stg

E G ⇔ F k(stb) = Gk(stb).

Complementing Previous Results
In order to provide an exhaustive analysis of intermediate
semantics (confer penultimate section) we provide missing
kernels for naive semantics as well as strongly admissible
sets. We start with the so-called naive kernel characterizing
expansion equivalence w.r.t. naive semantics. As an aside,
the following kernel is the first one which adds attacks to the
former attack relation.

Definition 5. Given an AF F = (A,R). We define the
naive kernel F k(na) =

(
A,Rk(na)

)
whereby Rk(na) =

R ∪ {(a, b) | a 6= b, {(a, a), (b, a), (b, b)} ∩R 6= ∅} .
The following example illustrates the definition above.

Example 1. Consider the AFs F and G . Note that na(F) =
na (G) = {{a, c}, {a, d}}. Consequently, F ≡na G .

aF : b c d

aG : b c d

In accordance with Definition 5 we observe that both AFs
possess the same naive kernel H = F k(na) = Gk(na).

aH : b c d

The following theorem proves that possessing the same ker-
nels is necessary as well as sufficient for being strongly equiv-
alent, i.e. F ≡na

E G .
Theorem 2. For all AFs F ,G ,

F ≡na
E G ⇔ F k(na) = Gk(na).

Proof. In (Baumann and Woltran 2014) it was already
shown that F ≡na

E G iff jointly A(F) = A(G) and
na(F) = na(G). Consequently, it suffices to prove
that F k(na) = Gk(na) implies A(F) = A(G) as well as
na(F) = na(G) and vice versa.

(⇐) Given F k(na) = Gk(na). By Definition 5 we immedi-
ately haveA(F) = A(G). Assume now that na(F) 6= na(G)
and without loss of generality let S ∈ na(F) \ na(G). Obvi-
ously, for any AF H , cf(H) = cf

(
H k(na)

)
. Hence, there

is an S′, s.t. S (S′ ∈ cf(G) \ cf(F). Thus, there are
a, b ∈ S′ \ S, s.t. (a, b) ∈ R(F) \ R(G). Furthermore,
(a, a), (b, b) /∈ R(G) and since for any AF H , L(H) =
L
(
H k(na)

)
we obtain (a, a), (b, b) /∈ R(F). Consequently,

we have to consider a 6= b. Since (a, b) ∈ R(F) \ R(G),
we obtain (a, b), (b, a) ∈ R

(
F k(na)

)
. Since F k(na) = Gk(na)

is assumed we derive (a, b), (b, a) ∈ R
(
Gk(na)

)
. By Def-

inition 5 we must have (b, a) ∈ R(G) contradicting the
conflict-freeness of S′ in G .

(⇒) We show the contrapositive, i.e. F k(na) 6= Gk(na)

implies A(F) 6= A(G) or na(F) 6= na(G). Observe
that for any AF H , A(H) = A

(
H k(na)

)
. Consequently, if

A
(
F k(na)

)
6= A

(
Gk(na)

)
, then A(F) 6= A(G). Assume

now R
(
F k(na)

)
6= R

(
Gk(na)

)
. Without loss of general-

ity let (a, b) ∈ R
(
F k(na)

)
\ R

(
Gk(na)

)
. Since for any AF

H , L(H) = L
(
H k(na)

)
we obtain a 6= b. Furthermore,

(a, b) ∈ R
(
F k(na)

)
implies {(a, a), (a, b), (b, a), (b, b)} ∩

R (F) 6= ∅ and consequently, for any S ∈ na(F),
{a, b} 6⊆ S. Since (a, b) /∈ R

(
Gk(na)

)
we deduce

{(a, a), (a, b), (b, a), (b, b)} ∩ R (F) = ∅. Hence, {a, b} ∈
cf(G) and thus, there exists a set S ∈ na(G), s.t. {a, b} ⊆ S
(compare (Baumann and Spanring 2015, Lemma 3)) witness-
ing na(F) 6= na(G).

We turn now to strongly admissible sets (for short, sad)
(Baroni and Giacomin 2007b). We will show that, beside
grounded (Oikarinen and Woltran 2011) and resolution based
grounded semantics (Baroni, Dunne, and Giacomin 2011;
Dvořák et al. 2014), strongly admissible sets are characteri-
zable through the grounded kernel. Consider the following
self-referential definition taken from (Caminada 2014).

7

Definition 6. Given an AF F = (A,R). A set S ⊆ A
is strongly admissible, i.e. S ∈ sad(F) iff any a ∈ S is
defended by a strongly admissible set S′ ⊆ S \ {a}.

The following properties are needed to prove the charac-
terization theorem. The first two of them are already shown
in (Baroni and Giacomin 2007a). The third statement is an
immediate consequence of the former.

Proposition 1. Given two AFs F and G , then

1. gr(F) ⊆ sad(F) ⊆ ad(F),
2. if S ∈ gr(F) we have: S′ ⊆ S for all S′ ∈ sad(F), and
3. sad(F) = sad(G) implies gr(F) = gr(G).

The following definition provides us with an alternative
criterion for being a strong admissible set. In contrast to the
former it allows one to construct strong admissible sets step
by step. Thus, a construction method is given.

Definition 7. Given an AF F = (A,R). A set S ⊆
A is strongly admissible, i.e. S ∈ sad(F) iff there are
finitely many and pairwise disjoint sets A1, ..., An, s.t.
S =

⋃
1≤i≤nAi and A1 ⊆ ΓF (∅)3 and furthermore,⋃

1≤i≤j Ai defends Aj+1 for 1 ≤ j ≤ n− 1.

Proposition 2. Definitions 6 and 7 are equivalent.

Proof. For the proof we use S ∈ sadk(F) as a short-
hand for S ∈ sad(F) in the sense of Definition k.
(⇐) Given S ∈ sad7(F). Hence, there is a finite
partition, s.t. S =

⋃
1≤i≤nAi, A1 ⊆ ΓF (∅) and⋃

1≤i≤j Ai defends Aj+1 for 1 ≤ j ≤ n − 1. Observe that⋃
1≤i≤j Ai ∈ sad7(F) for any j ≤ n. Let a ∈ S. Con-

sequently, there is an index i∗, s.t. a ∈ Ai∗ . Furthermore,
since

⋃
1≤i≤i∗−1Ai defends Ai∗ by definition, we deduce

that
⋃

1≤i≤i∗−1Ai ⊆ S \ {a} defends a. We have to show
now that (the smaller set w.r.t. ⊆)

⋃
1≤i≤i∗−1Ai ∈ sad6(F).

Note that
⋃

1≤i≤i∗−1Ai ∈ sad7(F). Since we are dealing
with finite AFs we may iterate our construction. Hence, no
matter which elements are chosen we end up with a ⊆-chain,
s.t. ∅ ⊆ ⋃1≤i≤ie Ai ⊆ Se \ ae and ∅ defends ae for some
index ie, set Se and element ae. This means, the question
whether S ∈ sad6(F) can be decided positively by proving
∅ ∈ sad6(F). Since the empty set does not contain any ele-
ments we find ∅ ∈ sad6(F) concluding sad7 ⊆ sad6.
(⇒) Given S ∈ sad6(F), consider the following
sets Si: S1 = (Γ(∅) \ ∅) ∩ S, S2 = (Γ(S1) \ S1) ∩
S, S3 =

(
Γ(
⋃2
i=1 Si) \

⋃2
i=1 Si

)
∩ S, . . . , Sn =

(
Γ(
⋃n−1
i=1 Si) \

⋃n−1
i=1 Si

)
∩ S. Since we are dealing with

finite AFs there has to be a natural n ∈ N, s.t. Sn =
Sn+1 = Sn+2 = Consider now the union of
these sets, i.e.

⋃n
i=1 Si. We show now that

⋃n
i=1 Si ∈

sad7(F) and
⋃n
i=1 Si = S. By construction we have

S1 ⊆ Γ(∅). Moreover,
⋃

1≤i≤j Si defends Sj+1 for 1 ≤
j ≤ n − 1. This can be seen as follows. By definition

3Hereby, Γ is the so-called characteristic function (Dung 1995)
with ΓF (S) = {a ∈ A | a is defended by S in F}. The term
ΓF (∅) can be equivalently replaced by {a ∈ A | a is unattacked}.

Sj+1 =
(

Γ(
⋃j
i=1 Si) \

⋃j
i=1 Si

)
∩ S. This means, Sj+1 ⊆

Γ(
⋃j
i=1 Si). Since Γ(

⋃j
i=1 Si) contains all elements de-

fended by
⋃j
i=1 Si we obtain

⋃n
i=1 Si ∈ sad7(F). Obvi-

ously,
⋃j
i=1 Si ⊆ S. In order to derive a contradiction we sup-

pose S 6⊆ ⋃ni=1 Si. This means there is a nonempty set S∗,
s.t. S = S∗ ∪⋃ni=1 Si. Let S∗ = {s1, . . . , sk}. Observe that
no element si is defended by

⋃n
i=1 Si (*). Since S ∈ sad6(F)

we obtain a set S∗1 ⊆ S \ {s1}, s.t. S∗1 ∈ sad6(F) and S∗1
defends s1. We now iterate this procedure ending up with a
set S∗k ⊆ S∗k−1 \ {sk} ⊆

⋃n
i=1 Si, s.t. S∗k ∈ sad6(F) and S∗k

defends sk contradicting (*) and concluding the proof.

The following example shows how to use the new con-
struction method.
Example 2. Consider the following AF F .

aF :
b

c

d

e f

We have ΓF (∅) = {a, d}. Hence, for all S ⊆ {a, d},
S ∈ sad(F). Furthermore, ΓF ({a}) = {a, c}, ΓF ({d}) =
{d, f} and ΓF ({a, d}) = {a, d, c, f}. This means, ad-
ditionally {a, c}, {d, f}, {a, d, c}, {a, d, f}, {a, d, c, f} ∈
sad(F). Finally, ΓF ({a, c}) = {a, c, f} justifying the last
missing set {a, c, f} ∈ sad(F).

The following corollary is an immediate consequence of
Definition 7. It is essential to prove the characterization theo-
rem for strongly admissible sets.
Corollary 1. Given an AF F and two sets B,B′ ⊆ A(F).
If B defends B′, then B ∪B′ is strong admissible if B is.

The following lemma shows that the grounded kernel is
insensitive w.r.t. strong admissible sets.

Lemma 1. For any AF F , sad (F) = sad
(
F k(gr)

)
.

Proof. The grounded kernel is node- and loop-preserving, i.e.
A(F) = A

(
F k(gr)

)
and L(F) = L

(
F k(gr)

)
. Furthermore,

cf(F) = cf
(
F k(gr)

)
and ΓF (∅) = ΓFk(gr)(∅) as shown in

(Oikarinen and Woltran 2011, Lemma 6).
(⊆) Given S ∈ sad (F). The proof is by induction on n
indicating the number of sets forming a suitable (according to
Definition 7) partition of S. Let n = 1. In consideration of the
grounded kernel we observe ΓF (∅) = ΓFk(gr)(∅), i.e. the set
of unattacked arguments does not change. Since S ⊆ ΓF (∅)
is assumed we are done. Assume now that the assertion is
proven for any k-partition. Let S be a (k + 1)-partition, i.e.
S =

⋃k+1
i=1 Ai. According to induction hypothesis as well

as Corollary 1 it suffices to prove
⋃k
i=1Ai defends Ak+1 in

F k(gr). Assume not, i.e. there are arguments b ∈ A(F) \ S,
c ∈ Ak+1 s.t. (b, c) ∈ R

(
F k(gr)

)
⊆ R(F) and for all a ∈⋃k

i=1Ai, (a, b) /∈ R
(
F k(gr)

)
(*). Since

⋃k
i=1Ai defends

Ak+1 in F we deduce the existence of an argument a ∈⋃k
i=1Ai s.t. (a, b) ∈ R (F). Thus, (a, b) is redundant w.r.t.

the grounded kernel. According to Definition 4 and due to

8 verifiability of argumentation semantics

the conflict-freeness of
⋃k
i=1Ai we have (a, a) /∈ R (F) and

(b, a), (b, b) ∈ R (F). Consequently, (b, a) ∈ F k(gr). Since⋃k
i=1Ai is a strong admissible k-partition in F we obtain

by induction hypothesis that
⋃k
i=1Ai is strong admissible

in F k(gr) and therefore, admissible in F k(gr) (Proposition 1).
Hence there has to be an argument a ∈ ⋃ki=1Ai, s.t. (a, b) ∈
R
(
F k(gr)

)
, contradicting (*).

(⊇) Assume S ∈ sad
(
F k(gr)

)
. We show S ∈ sad (F) by

induction on n indicating that S is a n-partition in F k(gr).
Due to ΓF (∅) = ΓFk(gr)(∅) the base case is immediately
clear. For the induction step let S be a (k + 1)-partition,
i.e. S =

⋃k+1
i=1 Ai. By induction hypothesis we may assume

that
⋃k
i=1Ai is strongly admissible in F . Using Corollary 1

it suffices to prove
⋃k
i=1Ai defends Ak+1 in F . Assume

not, i.e. there are arguments b ∈ A(F) \ S, c ∈ Ak+1 s.t.
(b, c) ∈ R (F) and for all a ∈ ⋃ki=1Ai, (a, b) /∈ R (F). We
even have (a, b) /∈ R

(
F k(gr)

)
since R

(
F k(gr)

)
⊆ R (F).

Consequently, (b, c) has to be deleted in F k(gr). Defini-
tion 4 requires (c, c) ∈ R

(
F k(gr)

)
contradicting the conflict-

freeness of S in F k(gr).

Theorem 3. For any two AFs F and G we have,

F ≡sad
E G ⇔ F k(gr) = Gk(gr)

Proof. (⇒) We show the contrapositive, i.e.
F k(gr) 6= Gk(gr) ⇒ F 6≡sad

E G . Assuming F k(gr) 6= Gk(gr)

implies F 6≡gr
E G (Theorem 1). This means, there is an

AF H , s.t. gr(F ∪ H) 6= gr(G ∪ H). Due to statement 3
of Proposition 1, we deduce sad(F ∪ H) 6= sad(G ∪ H)
proving F 6≡sad

E G .
(⇐) Given F k(gr) = Gk(gr). Since expansion equivalence is a
congruence w.r.t. ∪ we obtain (F ∪H)

k(gr)
= (G ∪H)

k(gr)

for any AF H . Consequently, sad
(

(F ∪H)
k(gr)

)
=

sad
(

(G ∪H)
k(gr)

)
. Due to Lemma 1 we deduce sad(F ∪

H) = sad(G ∪H), concluding the proof.

Verifiability
In this section we study the question whether we really need
the entire AF F to compute the extensions of a given seman-
tics. Let us consider naive semantics. Obviously, in order to
determine naive extensions it suffices to know all conflict-
free sets. Conversely, knowing cf(F) only does not allow to
reconstruct F unambiguously. This means, knowledge about
cf(F) is indeed less information than the entire AF by itself.
In fact, most of the existing semantics do not need informa-
tion of the entire framework. We will categorize the amount
of information by taking the conflict-free sets as a basis and
distinguish between different amounts of knowledge about
the neighborhood, that is range and anti-range, of these sets.

Definition 8. We call a function rx : 2U × 2U →
(
2U
)n

(n > 0) which is expressible via basic set operations only
neighborhood function. A neighborhood function rx induces

the verification class mapping each AF F to

F̃x = {(S, rx(S+
F , S

−
F)) | S ∈ cf(F)}.

We coined the term neighborhood function because the
induced verification classes apply these functions to the neigh-
borhoods, i.e. range and anti-range of conflict-free sets. The
notion of expressible via basic set operations simply means
that (in case of n = 1) the expression rx(A,B) is in the
language generated by the following BNF:

X ::= A | B | (X ∪X) | (X ∩X) | (X \X).

Consequently, in case of n = 1, we may distinguish eight set
theoretically different neighborhood functions, namely

rε(S, S′) = ∅
r+(S, S′) = S

r−(S, S′) = S′

r∓(S, S′) = S′ \ S
r±(S, S′) = S \ S′

r∩(S, S′) = S ∩ S′

r∪(S, S′) = S ∪ S′

r∆(S, S′) = (S ∪ S′) \ (S ∩ S′)
A verification class encapsulates a certain amount of infor-

mation about an AF, as the following example illustrates.
Example 3. Consider the following AF F :

aF : b c

Now take, for instance, the verification class induced by
r+, that is F̃+ = {(S, r+(S+

F , S
−
F)) | S ∈ cf(F)} =

{(S, S+
F) | S ∈ cf(F)}, storing information about conflict-

free sets together with their associated ranges w.r.t. F . It
contains the following tuples: (∅, ∅), ({a}, {b}), ({c}, {b}),
and ({a, c}, {b}). The verification class induced by r± con-
tains the same tuples but ({a}, ∅) instead of ({a}, {b}).

Intuitively, it should be clear that the set F̃+ suffices to
compute stage extensions (i.e., range-maximal conflict-free
sets) of F . This intuitive understanding of verifiability will be
formally specified in Definition 10. Note that a neighborhood
function rx may return n-tuples. Consequently, in consider-
ation of the eight listed basic function we obtain (modulo
reordering, duplicates, empty set) 27 + 1 syntactically differ-
ent neighborhood functions and therefore the same number
of verification classes. As usual, we will denote the n-ary
combination of basic functions (rx1(S, S′), . . . , rxn(S, S′))
as rx(S, S′) with x = x1 . . . xn.

With the following definition we can put neighborhood
functions into relation w.r.t. their information. This will help
us to show that actually many of the induced classes collapse
to the same amount of information.
Definition 9. Given neighborhood functions rx and ry re-
turning n-tuples and m-tuples, respectively, we say that rx
is more informative than ry, for short rx � ry, iff there is a
function δ :

(
2U
)n →

(
2U
)m

such that for any two sets of
arguments S, S′ ⊆ U , we have δ (rx(S, S′)) = ry (S, S′).

9

+−

+± +∓ ±∓ ∩ ∪ −± −∓

+ ± ∩ ∆ ∪ ∓ −

ε

Figure 1: Representatives of neighborhood functions and
their relation w.r.t. information; a node x stands for the neigh-
borhood function rx; an arrow from x to y means rx ≺ ry .

We will denote the strict part of � by �, i.e. rx � ry iff
rx � ry and ry 6� rx. Moreover rx ≈ ry in case rx � ry and
ry � rx, we say that rx represents ry and vice versa.

Lemma 2. All neighborhood functions are represented by
the ones depicted in Figure 1 and the ≺-relation represented
by arcs in Figure 1 holds.

Proof. We begin by showing that all neighborhood functions
are represented in Figure 1. Clearly, each neighborhood func-
tion rx represents itself, i.e. rx ≈ rx. All neighborhood func-
tions for n = 1 are are depicted in Figure 1. We turn to n = 2.
Consider the neighborhood functions r+±, r+∩, and r±∩, de-
fined as r+±(S, S′) = (S, S \S′), r+∩(S, S′) = (S, S∩S′),
and r±∩(S, S′) = (S \ S′, S ∩ S′) for S, S′ ⊆ U . Observe
that S = (S \ S′) ∪ (S ∩ S′). Hence, we can easily define
functions in the spirit of Definition 9 mapping the images of
the function to one another:

• δ1(r+±(S, S′)) = δ1(S, S \S′) =def (S, S \ (S \S′)) =
(S, S ∩ S′) = r+∩(S, S′);
• δ2(r+∩(S, S′)) = δ2(S, S ∩ S′) =def (S \ (S ∩ S′), S ∩
S′) = (S \ S′, S ∩ S′) = r±∩(S, S′);

• δ3(r±∩(S, S′)) = δ3(S \ S′, S ∩ S′) =def ((S \ S′) ∪
(S ∩ S′), S \ S′) = (S, S \ S′) = r+±(S, S′).

Therefore, r+± ≈ r+∩ ≈ r±∩. In particular, they are all
represented by r±. We can apply the same reasoning to
other combinations of neighborhood functions and get the
following equivalences w.r.t. information content: r+∓ ≈
r+∪ ≈ r∓∪; r±∓ ≈ r±∆ ≈ r∓∆; r∩∪ ≈ r∩∆ ≈ r∪∆;
r−± ≈ r−∪ ≈ r±∪; and r−∓ ≈ r−∩ ≈ r∓∩, with the func-
tions stated first acting as representatives in Figure 1.

For the remaining functions returning 2-tuples we get
r+− ≈ r+∆ ≈ r−∆ by

• δ4(r+−(S, S′)) = δ4(S, S′) =def (S, (S ∪ S′) \ (S ∩
S′)) = r+∆(S, S′);

• δ5(r+∆(S, S′)) = δ5(S, (S ∪ S′) \ (S ∩ S′)) =def ((S \
((S ∪ S′) \ (S ∩ S′))) ∪ ((S ∪ S′) \ (S ∩ S′)) \ S, (S ∪
S′) \ (S ∩S′)) = (S′, (S ∪S′) \ (S ∩S′)) = r−∩(S, S′);

• δ6(r−∆(S, S′)) = δ6(S′, (S∪S′)\ (S∩S′)) =def ((S′ \
((S ∪S′) \ (S ∩S′)))∪ ((S ∪S′) \ (S ∩S′)) \S′, S′) =
(S, S′) = r+−(S, S′).

Finally, every neighborhood function rx1...xn with n ≥ 3
is represented by r+− since we can compute all possible sets
from S and S′.

Now consider two functions rx and ry such that there is an
arrow from x to y in Figure 1. It is easy to see that ry � rx

since, for sets of arguments S and S′, rx(S, S′) is either
contained in ry(S, S′) or obtainable from ry(S, S′) by basic
set operations. The fact that rx 6� ry, entailing ry � rx,
follows from the impossibility of finding a function δ such
that δ(rx(S, S′)) = ry(S, S′).

If the information provided by a neighborhood function is
sufficient to compute the extensions, we say the semantics is
verifiable by the class induced by the neighborhood function.

Definition 10. A semantics σ is verifiable by the verification
class induced by the neighborhood function rx returning n-
tuples (or simply, x-verifiable) iff there is a function (also
called criterion) γσ :

(
2U
)n × 2U → 22U s.t. for every AF

F ∈ A we have:

γσ

(
F̃x, A(F)

)
= σ(F).

Moreover, σ is exactly x-verifiable iff σ is x-verifiable and
there is no verification class induced by ry with ry ≺ rx such
that σ is y-verifiable.

Observe that if a semantics σ is x-verifiable then for any
two AFs F and G with F̃x = G̃x andA(F) = A(G) it must
hold that σ(F) = σ(G).

We proceed with a list of criteria showing that any seman-
tics mentioned in Definition 1 is verifiable by a verification
class induced by a certain neighborhood function. In the
following, we abbreviate the tuple (F̃x, A(F)) by F̃xA.

γna(F̃
ε
A) = {S | S ∈ F̃ , S is ⊆ -maximal in F̃};

γstg(F̃
+
A) = {S | (S, S+) ∈ F̃+, S+ is ⊆ -maximal in

{C+ | (C,C+) ∈ F̃+}};
γstb(F̃

+
A) = {S | (S, S+) ∈ F̃+, S+ = A};

γad(F̃
∓
A) = {S | (S, S∓) ∈ F̃∓, S∓ = ∅};

γpr(F̃
∓
A) = {S | S ∈ γad(F̃

∓
A), S is ⊆ -maximal in γad(F̃

∓
A)};

γss(F̃
+∓
A) = {S | S ∈ γad(F̃

∓
A), S+ is ⊆ -maximal in

{C+ | (C,C+, C∓) ∈ F̃+∓, C ∈ γad(F̃
∓
A)}};

γid(F̃
∓
A) = {S | S is ⊆ -maximal in

{C | C ∈ γad(F̃
∓
A), C ⊆

⋂
γpr(F̃

∓
A)}};

γeg(F̃
+∓
A) = {S | S is ⊆ -maximal in

{C | C ∈ γad(F̃
∓
A), C ⊆

⋂
γss(F̃

+∓
A)}};

γsad(F̃
−±
A) = {S | (S, S−, S±) ∈ F̃−±,

∃(S0, S
−
0 , S

±
0), . . . , (Sn, S

−
n , S

±
n) ∈ F̃−± :

(∅ = S0 ⊂ · · · ⊂ Sn = S∧
∀i ∈ {1, . . . , n} : S−i ⊆ S±i−1)};

10 verifiability of argumentation semantics

γgr(F̃
−±
A) = {S | S ∈ γsad(F̃

−±
A),

∀(S̄, S̄−, S̄±) ∈ F̃−± : S̄⊃S ⇒ (S̄−\S±) 6=∅)};
γco(F̃

+−
A) = {S | (S, S+, S−) ∈ F̃+−, (S− \ S+) = ∅,

∀(S̄, S̄+, S̄−) ∈ F̃+− : S̄⊃S ⇒ (S̄−\S+)6=∅)}.

Instead of a formal proof we give the following explana-
tions. First of all it is easy to see that the naive semantics is
verifiable by the verification class induced by rε since the
naive extensions can be determined by the conflict-free sets.
Stable and stage semantics, on the other hand, utilize the
range of each conflict-free set in addition. Hence they are ver-
ifiable by the verification class induced by r+. Now consider
admissible sets. Recall that a conflict-free S set is admissible
if and only if it attacks all attackers. This is captured exactly
by the condition S∓ = ∅, hence admissible sets are verifi-
able by the verification class induced by r∓. The same holds
for preferred semantics, since we just have to determine the
maximal conflict-free sets with S∓ = ∅. Semi-stable seman-
tics, however, needs the range of each conflict-free set in
addition, see γss, which makes it verifiable by the verifica-
tion class induced by r+∓. Finally consider the criterion γco.
The first two conditions for a set of arguments S stand for
conflict-freeness and admissibility, respectively. Now assume
the third condition does not hold, i.e., there exists a tuple
(S̄, S̄+, S̄−) ∈ F̃+− with S̄ ⊃ S and S̄− \ S+ = ∅. This
means that every argument attacking S̄ is attacked by S, i.e.,
S̄ is defended by S. Hence S is not a complete extension,
showing that γco(F̃+−

A) = co(F) for each F ∈ A . One
can verify that all criteria from the list are adequate in the
sense that they describe the extensions of the corresponding
semantics.

We show now that the formal concepts of verifiability and
being more informative behave correctly in the sense that the
use of more informative neighborhood functions do not lead
to a loss of verification capacity.
Proposition 3. If a semantics σ is x-verifiable, then σ is
verifiable by all verification classes induced by some ry with
ry � rx.

Proof. As σ is verifiable by the verification class induced by
rx it holds that there is some γσ such that for all F ∈ A ,
γσ(F̃x, A(F)) = σ(F). Now let ry � rx, meaning that
there is some δ such that δ(ry(S, S′)) = rx. We define
γ′σ(F̃ y, A(F)) = γσ({(S, δ(S)) | (S,S) ∈ F̃ y}, A(F))

and observe that {(S, δ(S)) | (S,S) ∈ F̃ y} = F̃x, hence
γ′σ(F̃ y, A(F)) = σ(F) for each F ∈ A .

In order to prove unverifiability of a semantics σ w.r.t.
a class induced by a certain rx it suffices to present two
AFs F and G such that σ(F) 6= σ(G) but, F̃x = G̃x and
A(F) = A(G). Then the verification class induced by rx

does not provide enough information to verify σ.
In the following we will use this strategy to show exact

verifiability. Consider a semantics σ which is verifiable by
a class induced by rx. If σ is unverifiable by all verifiability

classes induced by ry with ry ≺ rx we have that σ is exactly
verifiable by rx. The following examples study this issue for
the semantics under consideration.
Example 4. The complete semantics is +−-verifiable as
seen before. The following AFs show that it is even exactly
verifiable by that class.

aF1 : b aF ′1 : b

aF2 : b c aF ′2 : b c

aF3 : b aF ′3 : b

aF4 : b aF ′4 : b

aF5 : b aF ′5 : b

aF6 : b aF ′6 : b

First consider the AFs F1 and F ′1, and observe that F̃1

+±
=

{(∅, ∅, ∅), ({a}, ∅, ∅)} = F̃ ′1
+±

. On the other hand F1 and
F ′1 differ in their complete extensions since co(F1) = {∅}
but co(F ′1) = {{a}}. Therefore complete semantics is un-
verifiable by the verification class induced by r+±. Likewise,
this can be shown for the classes induced by r−∓, r±∓, r−±,
r+∓, and r∩∪, respectively:

• F̃2

−∓
= {(∅, ∅, ∅), ({a}, ∅, ∅), ({a, c}, {b}, ∅),

({c}, {b}, ∅)} = F̃ ′2
−∓

, but co(F2) = {{a}, {a, c}} 6=
{{a, c}} = co(F ′2).

• F̃3

±∓
= F̃ ′3

±∓
, but co(F3) = {∅, {a}} 6= {{a}} = co(F ′3).

• F̃4

−±
= F̃ ′4

−±
, but co(F4) = {∅, {a}} 6= {∅} = co(F ′4).

• F̃5

+∓
= F̃ ′5

+∓
, but co(F5) = {∅, {a}} 6= {{a}} = co(F ′5).

• F̃6

∩∪
= F̃ ′6

∩∪
, but co(F6) = {{a}} 6= {∅} = co(F ′6).

Hence the complete semantics is exactly verifiable by the
verification class induced by r+−.
Example 5. Consider the semi-stable and eager semantics
and recall that they are +∓-verifiable In order to show exact
verifiability it suffices to show unverifiability by the classes
induced by r+, r∪, and r∓ (cf. Figure 1); F1 and F6 are taken
from Example 4 above.

• F̃1

+
= F̃ ′1

+
, but ss(F1) = eg(F1) = {∅} 6= {{a}} =

ss(F ′1) = eg(F ′1).
• F̃6

∪
= F̃ ′6

∪
, but ss(F6) = eg(F6) = {{a}} 6= {∅} =

ss(F ′6) = eg(F ′6).

• F̃7

∓
= F̃ ′7

∓
, but ss(F7) = {{b}} 6= {{a}, {b}} = ss(F ′7) and

eg(F7) = {{b}} 6= {∅} = eg(F ′7).

aF7 : b c aF ′7 : b c

Hence, both the semi-stable and eager semantics are exactly
verifiable by the verification class induced by r+∓.

11

ε: na

+: stb, stg ∓: ad, pr , id

+∓: ss, eg −±: gr, sad

+−: co

Figure 2: Semantics and their exact verification classes.

Example 6. Now consider the grounded and strong admissi-
ble semantics and recall that they are −±-verifiable In order
to show exact verifiability we have to show unverifiability by
the classes induced by r±, r−, and r∪ (cf. Figure 1); again,
the AFs from Example 4 can be reused.

• F̃1

±
= F̃ ′1

±
, but gr(F1) = {∅} 6= {{a}} = gr(F ′1) and

sad(F1) = {∅} 6= {∅, {a}} = sad(F ′1).

• F̃2

−
= F̃ ′2

−
, but gr(F2) = {{a}} 6= {a, c} = gr(F ′2) and

sad(F2) = {∅, {a}} 6= {∅, {a}, {a, c}} = sad(F ′2)

• F̃6

∪
= F̃ ′6

∪
, but gr(F6) = {{a}} 6= {∅} = gr(F ′6) and

sad(F6) = {∅, {a}} 6= {∅} = sad(F ′6).

Hence, both the grounded and strong admissible semantics
are exactly verifiable by the verification class induced by
r+∓.

Example 7. Finally consider stable, stage, admissible, pre-
ferred and ideal semantics. They are either +-verifiable (stb
and stg) or ∓-verifiable (ad, pr , and id). In order to show
that these verification classes are exact we have to show
unverifiability w.r.t. the verification class induced by rε. Con-
sider, for instance, the AFs F4 and F ′4 from Example 4. We
have F̃4

ε
= F̃ ′4

ε
, but ad(F4) = {∅, {a}} 6= {∅} = ad(F ′4),

stb(F4) = {{a}} 6= ∅ = stb(F ′4), and σ(F4) = {{a}} 6=
{∅} = σ(F ′4) for σ ∈ {stg , pr , id}, showing exactness of
the respective verification classes.

The insights obtained through Examples 4, 5, 6, and 7
show that the verification classes obtained from the criteria
given above are indeed exact. Figure 2 shows the relation
between the semantics under consideration with respect to
their exact verification classes.

We turn now to the main theorem stating that any rational
semantics (recall that all semantics we consider in this paper
are rational) is exactly verifiable by one of the 15 different
verification classes.

Theorem 4. Every semantics which is rational is exactly
verifiable by a verification class induced by one of the neigh-
borhood functions presented in Figure 1.

Proof. First of all note that by Lemma 2, rε is the least in-
formative neighborhood function and for every other neigh-
borhood function rx it holds that rε � r−. Therefore, if a
semantics is verifiable by the verification class induced by
any rx then it is exactly verifiable by a verification class
induced by some ry with rε � ry � rx. Moreover, if a seman-
tics is exactly verifiable by a class, then it is by definition also
verifiable by this class. Hence it remains to show that every

semantics which is rational is verifiable by a verification class
presented in Figure 1.

We show the contrapositive, i.e., if a semantics is not veri-
fiable by a verification class induced by one of the neighbor-
hood functions presented in Figure 1 then it is not rational.

Assume a semantics σ is not verifiable by one of the veri-
fication classes. This means σ is not verifiable by the verifi-
cation class induced by r+−. Hence there exist two AFs F
and G such that F̃+− = G̃+− and A(F) = A(G), but
σ(F) 6= σ(G). For every argument a which is not self-
attacking, a tuple ({a}, {a}+, {a}−) is contained in F̃+−

(and in G̃+−). Hence F and G have the same not-self-
attacking arguments and, moreover these arguments have
the same ingoing and outgoing attacks in F and G . This,
together with A(F) = A(G) implies that F l = G l (see
Definition 2) holds. But since σ(F) 6= σ(G) we get that σ is
not rational, which was to show.

Note that the criterion giving evidence for verifiability of a
semantics by a certain class has access to the set of arguments
of a given framework. In fact, only the criterion for stable
semantics makes use of that. Indeed, stable semantics needs
this information since it is not verifiable by any class when
using a weaker notion of verifiability, which rules out the
usage of A(F).

Intermediate Semantics
A type of semantics which has aroused quite some inter-
est in the literature (see e.g. (Baroni and Giacomin 2007a)
and (Nieves, Osorio, and Zepeda 2011)) are intermediate
semantics, i.e. semantics which yield results lying between
two existing semantics. The introduction of σ-τ -intermediate
semantics can be motivated by deleting undesired (or add
desired) τ -extensions while guaranteeing all reasonable posi-
tions w.r.t. σ. In other words, σ-τ -intermediate semantics can
be seen as sceptical or credulous acceptance shifts within the
range of σ and τ .

A natural question is whether we can make any statements
about compatible kernels of intermediate semantics. In partic-
ular, if semantics σ and τ are compatible with some kernel k ,
is then every σ-τ -intermediate semantics k -compatible. The
following example answers this question negatively.

Example 8. Recall from Theorem 1 that both stable and
stage semantics are compatible with k(stb), i.e. F ≡stb

E G ⇔
F ≡stg

E G ⇔ F k(stb) = Gk(stb). Now we define the fol-
lowing stb-stg-intermediate semantics, say stagle semantics:
Given an AF F = (A,R), S ∈ sta(F) iff S ∈ cf(F),
S+
F ∪ S−F = A and for every T ∈ cf(F) we have S+

F 6⊂ T+
F .

Obviously, it holds that stb ⊆ sta ⊆ stg and stb 6= sta as well
as sta 6= stg, as witnessed by the following AF F :

aF : b c

It is easy to verify that stb(F) = ∅ ⊂ sta(F) = {{b}} ⊂
stg(F) = {{b}, {c}}. We proceed by showing that stagle
semantics is not compatible with k(stb). To this end consider
F k(stb), which is depicted below.

12 verifiability of argumentation semantics

aF k(stb) : b c

Now, sta
(
F k(stb)

)
= {{b}, {c}} witnesses F 6≡sta F k(stb)

and therefore, F 6≡sta
E F k(stb). Since F k(stb) =

(
F k(stb)

)k(stb)

we are done, i.e. stagle semantics is indeed not compatible
with the stable kernel.

It is the main result of this section that compatibility of in-
termediate semantics w.r.t. a certain kernel can be guaranteed
if verifiability w.r.t. a certain class is presumed. The provided
characterization theorems generalize former results presented
in (Oikarinen and Woltran 2011). Moreover, due to the ab-
stract character of the theorems the results are applicable to
semantics which may be defined in the future.

Before turning to the characterization theorems we state
some implications of verifiability. In particular, under the
assumption that σ is verifiable by a certain class, equality of
certain kernels implies expansion equivalence w.r.t. σ.

Proposition 4. For any +-verifiable semantics σ we have

F k(stb) = Gk(stb) ⇒ F ≡σE G .

Proof. In (Oikarinen and Woltran 2011) it was shown
that F k(stb) = Gk(stb) ⇒ (F ∪H)k(stb) = (G ∪H)k(stb) (i).
Consider now a +-verifiable semantics σ. In order to show

σ (F) = σ
(
F k(stb)

)
(ii) we prove F̃+ = F̃ k(stb)

+

(*) first.
It is easy to see that S ∈ cf(F) iff S ∈ cf

(
F k(stb)

)
. Fur-

thermore, since k(stb) deletes an attack (a, b) only if a is
self-defeating we deduce that ranges does not change as
long as conflict-free sets are considered. Thus, σ(F) = (Def.)

γσ(F̃+) = (*) γσ(F̃ k(stb)
+

) = (Def.) σ(F k(stb)).
Now assume that F k(stb) = Gk(stb) and let S ∈ σ(F ∪ H)

for some AF H . We have to show that S ∈ σ(G ∪ H).
Applying (ii) we obtain S ∈ σ

(
(F ∪H)k(stb)

)
. Furthermore,

using (i) we deduce S ∈ σ
(
(G ∪H)k(stb)

)
. Finally, S ∈

σ (G ∪H) by applying (ii), which concludes the proof.

The following results can be shown in a similar manner.

Proposition 5. For any +∓-verifiable semantics σ we have

F k(ad) = Gk(ad) ⇒ F ≡σE G .

Proposition 6. For any +−-verifiable semantics σ we have

F k(co) = Gk(co) ⇒ F ≡σE G .

Proposition 7. For any −±-verifiable semantics σ we have

F k(gr) = Gk(gr) ⇒ F ≡σE G .

Proposition 8. For any ε-verifiable semantics σ we have

F k(na) = Gk(na) ⇒ F ≡σE G .

We proceed with general characterization theorems. The
first one states that stb-stg-intermediate semantics are com-
patible with stable kernel if +-verifiability is given. Conse-
quently, stagle semantics as defined in Example 8 can not be
+-verifiable.

Theorem 5. Given a semantics σ which is +-verifiable and
stb-stg-intermediate, it holds that

F k(stb) = Gk(stb) ⇔ F ≡σE G .

Proof. (⇒) Follows directly from Proposition 4.
(⇐) We show the contrapositive, i.e. F k(stb) 6= Gk(stb) ⇒
F 6≡σE G . Assuming F k(stb) 6= Gk(stb) implies F 6≡stg

E G , i.e.
there exists an AF H such that stg(F ∪ H) 6= stg(G ∪ H)
and therefore, stb(F ∪H) 6= stb(G ∪H). Let B = A(F) ∪
A(G)∪A(H) and H ′ = (B ∪{a}, {(a, b), (b, a) | b ∈ B}).
It is easy to see that stb(F ∪ H ′) = stb(F ∪ H) ∪ {{a}}
and stb(G ∪ H ′) = stb(G ∪ H) ∪ {{a}}. Since now both
stb(F ∪H ′) 6= ∅ and stb(G ∪H ′) 6= ∅ it holds that stb(F ∪
H ′) = stg(F ∪H ′) and stb(G ∪H ′) = stg(G ∪H ′). Hence
σ(F ∪H ′) 6= σ(F ∪H ′), showing that F 6≡stb

E G .

The following theorems can be shown in a similar manner.

Theorem 6. Given a semantics σ which is +∓-verifiable
and ρ-ad-intermediate with ρ ∈ {ss, id, eg}, it holds that

F k(ad) = Gk(ad) ⇔ F ≡σE G .

Remember that complete semantics is a ss-ad-intermediate
semantics. Furthermore, it is not characterizable by the
admissible kernel as already observed in (Oikarinen and
Woltran 2011). Consequently, complete semantics is not +∓-
verifiable (as we have shown in Example 4 with considerable
effort).

Theorem 7. Given a semantics σ which is −±-verifiable
and gr-sad-intermediate, it holds that

F k(gr) = Gk(gr) ⇔ F ≡σE G .

Conclusions
In this work we have contributed to the analysis and compar-
ison of abstract argumentation semantics. The main idea of
our approach is to provide a novel categorization in terms
of the amount of information required for testing whether a
set of arguments is an extension of a certain semantics. The
resulting notion of verifiability classes allows us to categorize
any new semantics (given it is “rational”) with respect to the
information needed and compare it to other semantics. Thus
our work is in the tradition of the principle-based evalua-
tion due to Baroni and Giacomin (2007b) and paves the way
for a more general view on argumentation semantics, their
common features, and their inherent differences.

Using our notion of verifiability, we were able to show
kernel-compatibility for certain intermediate semantics. Con-
cerning concrete semantics, our results yield the following
observation: While preferred, semi-stable, ideal and eager
semantics coincide w.r.t. strong equivalence, verifiability of
these semantics differs. In fact, preferred and ideal semantics
manage to be verifiable with strictly less information.

For future work we envisage an extension of the notion
of verifiability classes in order to categorize semantics not
captured by the approach followed in this paper, such as cf2
(Baroni, Giacomin, and Guida 2005).

13

References
Arieli, O. 2012. Conflict-tolerant semantics for argumenta-
tion frameworks. In Logics in Artificial Intelligence - 13th
European Conference, Proceedings, volume 7519 of Lecture
Notes in Computer Science, 28–40. Springer.
Baroni, P., and Giacomin, M. 2007a. Comparing argumenta-
tion semantics with respect to skepticism. In Symbolic and
Quantitative Approaches to Reasoning with Uncertainty, 9th
European Conference, Proceedings, volume 4724 of Lecture
Notes in Computer Science, 210–221. Springer.
Baroni, P., and Giacomin, M. 2007b. On principle-based
evaluation of extension-based argumentation semantics. Artif.
Intell. 171(10-15):675–700.
Baroni, P.; Caminada, M.; and Giacomin, M. 2011. An
introduction to argumentation semantics. Knowledge Eng.
Review 26(4):365–410.
Baroni, P.; Dunne, P. E.; and Giacomin, M. 2011. On the
resolution-based family of abstract argumentation semantics
and its grounded instance. Artif. Intell. 175(3-4):791–813.
Baroni, P.; Giacomin, M.; and Guida, G. 2005. SCC-
Recursiveness: A general schema for argumentation seman-
tics. Artif. Intell. 168(1-2):162–210.
Baumann, R., and Brewka, G. 2013. Analyzing the equiv-
alence zoo in abstract argumentation. In 14th International
Workshop on Computational Logic in Multi-Agent Systems,
Proceedings, volume 8143 of Lecture Notes in Computer
Science, 18–33. Springer.
Baumann, R., and Brewka, G. 2015. The equivalence zoo for
Dung-style semantics. Journal of Logic and Computation.
Baumann, R., and Spanring, C. 2015. Infinite argumentation
frameworks – on the existence and uniqueness of extensions.
In Advances in Knowledge Representation, Logic Program-
ming, and Abstract Argumentation - Essays Dedicated to G.
Brewka on the Occ. of His 60th Birthday, volume 9060 of
Lecture Notes in Computer Science, 281–295. Springer.
Baumann, R., and Woltran, S. 2014. The role of self-attacking
arguments in characterizations of equivalence notions. Jour-
nal of Logic and Computation: Special Issue on Loops in
Argumentation.
Baumann, R. 2016. Characterizing equivalence notions
for labelling-based semantics. In Principles of Knowledge
Representation and Reasoning: Proceedings of the 15th In-
ternational Conference. To appear.
Besnard, P.; Garcia, A.; Hunter, A.; Modgil, S.; Prakken,
H.; Simari, G.; and Toni, F. 2014. Special issue: Tutorials
on structured argumentation. Argument and Computation
5(1):1–117.
Caminada, M.; Carnielli, W. A.; and Dunne, P. E. 2012.
Semi-stable semantics. J. Log. Comput. 22(5):1207–1254.
Caminada, M. 2007. Comparing two unique extension se-
mantics for formal argumentation: Ideal and eager. In 19th
Belgian-Dutch Conference on Artificial Intelligence, Proceed-
ings, 81–87.
Caminada, M. 2014. Strong admissibility revisited. In Com-
putational Models of Argument - Proceedings of COMMA

2014, volume 266 of Frontiers in Artificial Intelligence and
Applications, 197–208. IOS Press.
Dung, P. M.; Mancarella, P.; and Toni, F. 2007. Computing
ideal sceptical argumentation. Artif. Intell. 171(10-15):642–
674.
Dung, P. M. 1995. On the acceptability of arguments and its
fundamental role in nonmonotonic reasoning, logic program-
ming and n-person games. Artif. Intell. 77(2):321–357.
Dvořák, W.; Linsbichler, T.; Oikarinen, E.; and Woltran,
S. 2014. Resolution-based grounded semantics revisited.
In Computational Models of Argument - Proceedings of
COMMA 2014, volume 266 of Frontiers in Artificial Intelli-
gence and Applications, 269–280. IOS Press.
Gaggl, S. A., and Woltran, S. 2013. The cf2 argumentation
semantics revisited. J. Log. Comput. 23(5):925–949.
Grossi, D., and Modgil, S. 2015. On the graded acceptability
of arguments. In Proceedings of the 24th International Joint
Conference on Artificial Intelligence, 868–874. AAAI Press.
Jakobovits, H., and Vermeir, D. 1999. Robust semantics for
argumentation frameworks. J. Log. Comput. 9(2):215–261.
Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly
equivalent logic programs. ACM Transactions on Computa-
tional Logic 2(4):526–541.
Loui, R. P. 1987. Defeat among arguments: a system of
defeasible inference. Computational Intelligence 14(1):100–
106.
Maher, M. J. 1986. Eqivalences of logic programs. In 3rd In-
ternational Conference on Logic Programming, Proceedings,
volume 225 of Lecture Notes in Computer Science, 410–424.
Springer.
Nieves, J. C.; Osorio, M.; and Zepeda, C. 2011. A schema
for generating relevant logic programming semantics and
its applications in argumentation theory. Fundam. Inform.
106(2-4):295–319.
Oikarinen, E., and Woltran, S. 2011. Characterizing strong
equivalence for argumentation frameworks. Artif. Intell.
175(14-15):1985–2009.
Pollock, J. L. 1987. Defeasible reasoning. Cognitive Science
11(4):481–518.
Prakken, H., and Vreeswijk, G. 2002. Logics for defea-
sible argumentation. In Handbook of Philosophical Logic.
Dordrecht. 219–318.
Truszczynski, M. 2006. Strong and uniform equivalence of
nonmonotonic theories - an algebraic approach. Annals of
Mathematics and Artificial Intelligence 48(3-4):245–265.
Turner, H. 2004. Strong equivalence for causal theories.
In 7th International Conference on Logic Programming and
Nonmonotonic Reasoning, Proceedings, volume 2923 of Lec-
ture Notes in Computer Science, 289–301. Springer.
Verheij, B. 1996. Two approaches to dialectical argumenta-
tion: admissible sets and argumentation stages. In 8th Dutch
Conference on Artificial Intelligence, Proceedings, 357–368.

14 verifiability of argumentation semantics

Preferential Modalities Revisited

Katarina Britz
CSIR-SU Centre for AI Research

Stellenbosch University, South Africa
abritz@sun.ac.za

Ivan Varzinczak
Centre de Recherche en Informatique de Lens

Université d’Artois, France
varzinczak@cril.fr

Abstract

We venture beyond the customary semantic approach
in NMR, namely that of placing orderings on worlds
(or valuations). In a modal-logic setting, we motivate
and investigate the idea of ordering elements of the ac-
cessibility relations in Kripke frames, i.e., world pairs
pw,w1q (or ‘arrows’). The underlying intuition is that
some world pairs may be seen as more normal (or typ-
ical, or expected) than others. We show this delivers an
elegant and intuitive semantic construction, which gives
a new perspective on present notions of defeasible ne-
cessity. From a modeler’s perspective, the new frame-
work we propose is more intuitively appealing. Tech-
nically, though, the revisited logic happens to not sub-
stantively increase the expressive power of the previ-
ously defined preferential modalities. This conclusion
follows from an analysis of both semantic constructions
via a generalisation of bisimulations to the preferential
case. Lest this be seen as a negative result, it essen-
tially means that reasoners based on the previous se-
mantics (which have been shown to preserve the com-
putational complexity of the underlying classical modal
language) suffice for reasoning over the new seman-
tics. Finally, we show that the kind of construction we
here propose has many fruitful applications, notably in a
description-logic context, where it provides the founda-
tions on which to ground useful notions of defeasibility
in ontologies yet to be explored.

Introduction
Accounts of normality (or typicality), plausibility and alike
traditionally have an underlying semantics built on a notion
of preference on worlds. Such is the case of non-monotonic
entailment (Shoham 1988; Kraus, Lehmann, and Magidor
1990; Makinson 2005), conditionals (Lehmann and Magidor
1992; Boutilier 1994), belief revision (Katsuno and Mendel-
zon 1991; Baltag and Smets 2006; 2008), counterfactu-
als (Stalnaker 1968; Lewis 1973; 1974), obligations (Hans-
son 1969) and many others, as known from the literature
on non-monotonic reasoning, conditional and deontic log-
ics, and related areas. Roughly speaking, the usual approach
consists in selecting some worlds (or propositional valua-
tions) as being more normal (alias typical, alias desirable)
and carrying out the reasoning relative to an underlying nor-
mality ordering on worlds.

A typical representative of these different yet interrelated
threads of investigation is the well-known preferential ap-
proach (Shoham 1988) and its derivatives (Kraus, Lehmann,
and Magidor 1990; Lehmann and Magidor 1992). There, a
preference relation is defined on the set of possible worlds
with the (tacit) assumption that these contain all is needed
to reason about what is normal or expected. A case can in-
deed be made for such an assumption in a propositional set-
ting. However, in logics with more structure, it is reason-
able to say that the normality ‘spotlight’ should not be con-
fined to worlds, but rather (also) be put on (possibly) what-
ever structure one has at one’s disposal in the respective un-
derlying semantics. To witness, in a modal logic context,
it makes sense to ask whether some links between worlds
in a frame are (relatively) more normal (or preferred) than
others—irrespective of whether the worlds involved are by
any means comparable in that way or another amongst them-
selves. In other words, one can be interested in the normality
of the transition from one world to another one. This point
is better illustrated with some well-known concrete applica-
tions of modal logics as given below.

Let us assume a very simplistic scenario in which we have
only one propositional atom, on, of which the intuition is
that a particular light-bulb is on. Moreover, let us assume
there is only one action at one’s disposal, namely toggle
(hereafter abbreviated t), of which the intuition is that of
changing the state of the light switch. Figure 1 below de-
picts a possible-worlds model for this scenario.

w11 w2 0

t
t

t

t

Figure 1: A possible-worlds model for one action (toggle)
and one atom (on).

Intuitively, normal (or typical, or expected) executions of
the toggle action are given by the t-transitions from w1 to
w2 and back, whereas the reflexive arrows are, in a sense,
less expected in the given scenario. Therefore, it becomes
important to single out those executions of the action that are
deemed more normal from those that are not. In Figure 1,

15

this would amount to enriching the semantic structure (in
a way still to be defined) with information specifying that
the pairs pw1, w2q and pw2, w1q somehow take ‘precedence’
over pw1, w1q and pw2, w2q when reasoning about possible
executions of the action.

Let us now consider a variant of the above scenario (al-
though just as simple), in which we have only one atomic
proposition, correct (which we shall abbreviate as c), the in-
tuition of which is that a proposed proof for a mathematical
statement is correct. Furthermore, let us assume there is a
good mathematician, M, whose knowledge about the cor-
rectness of the proof is of interest to us. Figure 2 below de-
picts one possible configuration of this scenario.

w11 w2 0

M
M

M

M

Figure 2: A possible-worlds model for one agent (the good
mathematician M) and one atom (correct).

As a good mathematician, Agent M should know whether
the proof is correct. Nevertheless, in the model of Figure 2,
M does not know (in the classical sense) whether the proof
is correct or not, since, also by virtue of being a good mathe-
matician, M admits the (unlikely) possibility of being wrong
(at least until the proof has been submitted to peer-reviewed
scrutiny). In this case, we would say that Agent M defeasi-
bly knows whether the proof is correct or not, an epistemic
stance that can be adopted by ‘focusing’ on the most nor-
mal (or expected) of the epistemic possibilities held by the
agent, namely pw1, w1q and pw2, w2q in Figure 2, which, in
this example, are more normal than pw1, w2q and pw2, w1q.
(It is not hard to see that the motivation above also holds in a
doxastic context, as certain beliefs may be more entrenched
than others.)

In order to motivate the foregoing ideas in a deontic
context, let us assume a language with a single proposi-
tional atom, namely fair-play, henceforth abbreviated f and
of which the intuition is that, in a competition, the players
abide by an established standard of ‘decency’ or an ‘honor-
able conduct’. In this context, adopting a fair-play stance is
not to be seen as an obligation in the usual (strict) meaning
of the term. It is rather a matter of best practice in that it
corresponds to the expected, though not enforceable (even
if, in some cases, liability-biding), attitude. Figure 3 below
depicts a possible-worlds model for this scenario.

w11 w2 0

Figure 3: A possible-worlds model for one atom (fair-play)
in a deontic-context.

A case can be made that envisioning an f-world as a bet-
ter alternative (to the current one) is more appropriate than
the contemplation of a f-one. Semantically, this require-
ment would be translated as setting the pairs pw1, w1q and
pw2, w1q as more preferred than pw2, w2q and pw1, w2q. In
this specific example, it happens that we could also model
the underlying preference as an ordering on worlds, with f-
worlds preferred to the f-worlds. However, in the preced-
ing examples, ordering worlds rather than pairs of worlds is
neither intuitive nor is it immediately clear whether this is
even possible.

In this work, we address precisely these issues. We shall
start by shifting the normality spotlight from possible worlds
to transitions amongst them, i.e., to accessibility relations in
Kripke frames. The justification for doing so stems from a
comparison with the classical (monotonic) case: In classical
Kripkean semantics, modalities are primarily about accessi-
bility, only secondarily about worlds’ contents. Hence, we
contend that accounts of a notion of defeasibility in modal-
ities (like those illustrated above) should primarily focus on
normality of the accessibility relations rather than (or at least
prior to) that of the (accessible) worlds. With that we hope to
pave the way for further explorations of non-monotonicity in
modal logics, in particular in extensions of the preferential
approach therein (Britz, Meyer, and Varzinczak 2011a).

Preliminaries
In this section, we provide the required formal background
for the rest of this work. In particular, we set up the nota-
tion and conventions that shall be followed in the upcoming
sections. (The reader conversant with modal logic can safely
skip the first subsection below.)

Modal Logic
We work in a set of atomic propositions P , using the logi-
cal connectives ^ (conjunction), (negation), and a set of
modal operators 3i, 1 ď i ď n. Propositions are denoted by
p, q, . . ., and sentences by α, β, . . ., constructed in the usual
way according to the rule (1 ď i ď n):

α ::“ p | α | α^ α | 3iα
All the other truth-functional connectives (_, Ñ, Ø, . . .)
are defined in terms of and ^ in the usual way. Given 3i,
1 ď i ď n, with 3i we denote its dual modal operator, i.e.,
for any α, 3iα :“ 3i α. We use J as an abbreviation
for p _ p and K as an abbreviation for p ^ p, for some
p P P . With L 3 we denote the set of all sentences of the
modal language.

The semantics is the standard possible-worlds one:

Definition 1 (Kripke Model) A Kripke model is a tuple
M :“ xW,R,Vy where W is a (non-empty) set of possi-
ble worlds, R :“ xR1, . . . ,Rny, where each Ri Ď W ˆW is
an accessibility relation on W, 1 ď i ď n, and V : W ÝÑ
t0, 1uP is a valuation function mapping possible worlds into
propositional valuations.

16 preferential modalities revisited

As an example, Figure 4 depicts the Kripke model M1 “
xW1,R1,V1y, where W1 :“ twi | 1 ď i ď 4u, R1 :“
xRa,Rby, with Ra :“ tpw1, w2q, pw1, w3q, pw4, w3qu, and
Rb :“ tpw1, w4q, pw2, w3qu, and V1 is the obvious valuation
function.

In our pictorial representations of models, we represent
propositional valuations as sequences of 0s and 1s, and with
the obvious implicit ordering of atoms. Thus, for the logic
generated from p and q, the valuation in which p is true and q
is false will be represented as 10.

M1 :

w100

w201 w3 11

w4 10

a
a

a

b

b

Figure 4: A Kripke model for P “ tp, qu and two modali-
ties, namely a and b.

We shall use w, u, v, . . . (possibly decorated with primes)
to denote possible worlds. Moreover, where it aids readabil-
ity, we shall henceforth sometimes write tuples of the form
pw,w1q as ww1.

Sentences of L 3 are true or false relative to a possible
world in a given Kripke model:

Definition 2 (Truth Conditions) Let M “ xW,R,Vy and
w P W:

• M , w , p if and only if Vpwqppq “ 1;
• M , w , α if and only if M , w . α;
• M , w , α^ β if and only if M , w , α and M , w , β;
• M , w , 3iα if and only if M , w1 , α for all w1 such

that pw,w1q P Ri.

Given α P L 3 and M “ xW,R,Vy, we say that M
satisfies α if there is at least one world w P W such that
M , w , α. We say that M is a model of α (alias α is true
in M), denoted M , α, if M , w , α for every world
w P W. Given a class (i.e., a collection) of models M, we
say that α is valid inM, denoted |ùM α, if and only if every
Kripke model M PM is a model of α. Given K Ď L 3 and
α P L 3, we say that K locally entails α in the class of mod-
els M, denoted K |ùM α, if and only if for every Kripke
model M P M and every w in M , if M , w , β for ev-
ery β P K, then M , w , α. (When the class of models we
are working with is clear from the context, we shall dispense
with subscripts and just write |ù α and K |ù α.)

Here we shall assume the system of normal modal
logic K, of which all the other normal modal logics are ex-
tensions. Semantically, K is characterised by the class of all
Kripke models (Definition 1). Syntactically, K corresponds
to the smallest set of sentences containing all propositional

tautologies, all instances of the axiom schema K : 3ipα Ñ
βq Ñ p 3iαÑ 3iβq, 1 ď i ď n, and closed under the rule
of necessitation below:

pRNq α

3iα
(1)

For more details on modal logic, we refer the reader to the
handbook by Blackburn et al. (2006).

Preferential Modalities
In previous work (Britz, Meyer, and Varzinczak 2011a;
Britz and Varzinczak 2013), we have investigated the fruit-
fulness of extending the standard Kripke semantics with a
preference relation on the set of possible worlds. This gives
rise to the following semantic structure, of which the under-
lying motivation is similar to that behind Boutilier’s (1994)
CT4O models and the plausibility models of Baltag and
Smets (2006; 2008).
Definition 3 (W-Ordered Model) A W-ordered model is a
tuple W :“ xW,R,V,ăy where xW,R,Vy is as in Defini-
tion 1 and ă Ď WˆW is a well-founded strict partial order
on W, i.e., ă is irreflexive, transitive and every non-empty
W1 Ď W has minimal elements w.r.t. ă (see Definition 4).

The intuition behind the preference relation ă in a W-
ordered model W is that the worlds lower down in the or-
dering are deemed as more preferred (or more normal) than
those higher up.
Definition 4 (Minimality w.r.t. ă) Let W “ xW,R,V,ăy
be a W-ordered model and let X Ď W. Then mină X :“
tw P X | there is no w1 P X such that w1 ă wu, i.e.,
mină X denotes the minimal elements of X with respect to
the preference relation ă.

As an example, Figure 5 below depicts the W-ordered
model W1 “ xW1,R1,V1,ă1y, where xW1,R1,V1y is as
in Figure 4 and ă1 :“ tpw1, w2q, pw2, w3q, pw1, w3q,
pw4, w3qu.

W1 :

w100

w201 w3 11

w4 10

a
a

a

b

b

Figure 5: A W-ordered model forP “ tp, qu and two modal-
ities (a and b). The preference relation ă1 is represented by
the dashed arrows, which point from more preferred to less
preferred worlds.

We can then extend L 3 with a family of defeasible modal
operators p„„pi (called ‘flag’), 1 ď i ď n, where n is the num-
ber of classical modalities in the language. The sentences of

17

the extended language are then recursively defined by:

α ::“ p | α | α^ α | 3iα | p„„piα
As before, the other connectives are defined in terms of
and ^ in the usual way, J and K are seen as abbreviations,
and 3i is the dual of 3i. Moreover, with p„„p i (called ‘flame’)
we denote the dual of p„„pi. We shall use Lp„„p to denote the set
of all sentences of such a richer language.

Definition 5 (Truth Conditions for Lp„„p) Let a W-ordered
model W “ xW,R,V,ăy and let w P W.
• L 3-sentences are evaluated as usual (Definition 2);
• W , w ,p„„piα if and only if for all w1, if w1 P mină Ripwq,

then W , w1 , α.

The notions of satisfaction, truth (in a model), validity (in
a class of models) and local entailment are generalised to
Lp„„p-sentences and W-ordered models in the obvious way.

Informally, a sentence of the form p„„piα holds in a world
if α holds in all the most preferred amongst its i-accessible
worlds. It is easy to see that p„„p is weaker than 3, i.e., the
following is a validity (1 ď i ď n):

|ù 3iαÑ p„„piα
Hence, intuitively, flag can be read as defeasible necessity.

As an example, considering the W-ordered model W1

from Figure 5, we have that W1, w1 , p„„pa p (but note that
W1, w1 . 3a p).

Revisiting Preferential Modal Logics
In spite of its gain in expressiveness when checked against
traditional approaches to defeasible reasoning, p„„pdoes not
quite seem to allow us to formalise the type of reasoning
motivated in the Introduction inasmuch as it relies on order-
ings on worlds. In this section, we shall revisit the frame-
work for preferential modalities, in particular its semantic
constructions.

R-Ordered Models
We start by giving a formal account of the semantic ideas
put forward in the Introduction.

Definition 6 (R-Ordered Model) An R-ordered model is a
tuple R :“ xW,R,V,Îy where W is a (non-empty and pos-
sibly infinite) set of possible worlds, R :“ xR1, . . . ,Rny,
where each Ri Ď W ˆ W is an accessibility relation on
W, for 1 ď i ď n, V : W ÝÑ t0, 1uP is a valua-
tion function assigning each world to a valuation on P ,
and Î :“ xÎ1, . . . ,Îny, where each ÎiĎ Ri ˆ Ri, for
1 ď i ď n, is a well-founded strict partial order on the
respective Ri, i.e., each Îi is irreflexive, transitive and ev-
ery non-empty R1

i Ď Ri has minimal elements w.r.t. Îi (see
Definition 7).

Given R :“ xW,R,V,Îy, the intuition of W, R and V is
the same as that in a standard Kripke model. The intuition of
each Îi in Î is that the pairs pw,w1q that are lower down in
the ordering Îi are deemed as the most normal (or typical,
or expected) in the context of Ri.

Definition 7 (Minimality w.r.t. Îi) Let R “ xW,R,V,Îy
be an R-ordered model and letX Ď Ri, for some 1 ď i ď n.
Then minÎi

X :“ tpw,w1q P X | there is no pu, vq P X
such that pu, vq Îi pw,w1qu, i.e., minÎi

X denotes the
minimal elements of X with respect to the preference rela-
tion Îi associated to Ri.

Since we assume each Îi to be a well-founded strict par-
tial order on the respective Ri, we are guaranteed that for
every X Ď Ri such that X ‰ H, minÎi X is well defined.

As an example, Figure 6 below depicts the R-ordered
model R1 :“ xW1,R1,V1,Î1y, where xW1,R1,V1y is
as in Figure 4, and Î1:“ xÎa,Îby, where Îa:“
tpw1w2, w1w3q, pw1w3, w4w3q, pw1w2, w4w3qu and Îb:“
tpw1w4, w2w3qu, represented, respectively, by the dashed
and the dotted arrows in the picture. (Note the direction of
the Î-arrows, which point from more preferred to less pre-
ferred transitions.) For the sake of readability, in our picto-
rial representations of R-ordered models, we shall omit the
transitive Î-arrows.

R1 :

w100

w201 w3 11

w4 10

a

a

a

b

b

Figure 6: An R-ordered model for P “ tp, qu and two
modalities. The preference relation Îa is represented by the
dashed arrows, whereas Îb by the dotted one.

A New Logic of Defeasible Modalities
We shall now enrich our underlying modal language with a
family of additional modal operators p„„„pi, 1 ď i ď n, where
n is the number of classical modalities in the language. (For
lack of a better term, we shall call p„„„p the ‘banner’.) The sen-
tences of the extended modal language are recursively de-
fined as follows:

α ::“ p | α | α^ α | 3iα | p„„„piα
With Lp„„„p we shall denote the set of all sentences of the

banner language.

Definition 8 Let R “ xW,R,V,Îy. For every w P W and
every Ri Ď WˆW, we define:

Rwi :“ tpu, vq | pu, vq P Ri and u “ wu
Definition 9 (Lp„„„p Truth Conditions) Let R “ xW,R,V,Îy
be an R-ordered model and w P W.
• L 3-sentences are evaluated as usual;
• R, w , p„„„piα if and only if for every w1, if pw,w1q P

minÎi
Rwi , then R, w1 , α.

18 preferential modalities revisited

The notions of satisfaction, truth (in a model), validity (in
a class of models) and local entailment are also generalised
to Lp„„„p-sentences and R-ordered models in the usual way.

Informally, a sentence of the form p„„„piα holds in a world
if α holds in all its most normally i-accessible worlds. As an
example, in the R-ordered model R1 of Figure 6, we have
that R1, w1 , p„„„pa p (but, of course, R1, w1 . 3a p).

Incidentally, p„„„p too is weaker than 3, as witnessed by the
validity below (1 ď i ď n):

|ù 3iαÑp„„„piα
Hence, p„„„p provides an alternative perspective on the no-

tion of defeasible necessity as formalised by p„„p. For instance,
in an action context, some executions (which refer to tran-
sitions) of a given action are deemed as more normal than
others. A priori, this is different from saying that some ef-
fects (which refer to target worlds) are normal. Indeed, an
abnormal execution may still lead to the expected (normal)
effect, just as a normal execution may produce an abnormal
effect. (We shall come back to this issue later on.)

The definitions of R-ordered models and p„„„p, alongside the
comment right above, raise the question as to how Lp„„p and Lp„„„p

compare to each other in terms of expressive power. This is
what we address in the next section.

Preferential Bisimulations
Standard bisimulations are used to determine whether two
Kripke models have the same modal properties, and to rea-
son about modal expressivity. Here, we extend the definition
of bisimulations to W-ordered and R-ordered models, and
use it to make precise the connection between these notions,
and the resulting modalities and modal languages.

Definition 10 Let M “ xW,R,Vy and M 1 “ xW1,R1,V1y.
A bisimulation between M and M 1 is a non-empty binary
relation E between their domains (that is, E Ď WˆW1) such
that, whenever wEw1, we have that:

1. For every p P P , M , w , p if and only if M 1, w1 , p;
2. if wRiv, then there exists a world v1 in W1 such that vEv1

and w1R1
iv

1, and
3. if w1R1

iv
1, then there exists a world v in W such that vEv1

and wRiv.

Informally, two worlds are bisimilar if they satisfy
the same atomic information, and their modal accessibil-
ity structures match. Two pointed models pM , wq and
pM 1, w1q are bisimilar if there exists a bisimulation E be-
tween M and M 1 such that wEw1. It then follows that:

Lemma 1 (Bisimulation invariance lemma) If E is a bi-
simulation between M “ xW,R,Vy and M 1 “ xW1,R1,V1y,
w P W and w1 P W1, and wEw1, then w and w1 satisfy the
same basic modal sentences.

The next definition and lemma generalise bisimulations
to take account of a preference order on worlds, as defined
on models of Lp„„p. Informally, two worlds are bisimilar if
they satisfy the same atomic information and their modal ac-
cessibility structures match, both with respect to accessible

worlds and with respect to most preferred relative accessible
worlds. Bisimilar worlds then also satisfy the same prefer-
ential modal sentences.

Definition 11 (W-ordered bisimulation) Let W-ordered
models W “ xW,R,V,ăy and W 1 “ xW1,R1,V1,ă1y. A
bisimulation between W and W 1 is a non-empty binary
relation E Ď W ˆ W1 such that, whenever wEw1, we have
that:

1. For every p P P , W , w , p if and only if W 1, w1 , p;
2. if wRiv, then there exists a world v1 in W1 such that vEv1

and w1R1
iv

1, and
• if v P mină Ripwq, then v1 P mină1 R1

ipw1q;
3. if w1R1

iv
1, then there exists a world v in W such that vEv1

and wRiv, and
• if v1 P mină1 R1

ipw1q, then v P mină Ripwq.
Lemma 2 (W-ordered bisimulation invariance lemma)
If E is a bisimulation between W “ xW,R,V,ăy and
W 1 “ xW1,R1,V1,ă1y, and wEw1, then w and w1 satisfy the
same modal sentences in the extended modal language Lp„„p.

Proof:
The lemma is proved by structural induction on α P Lp„„p.
We show that, for any w P W and w1 P W1, if wEw1, then
W , w , α iff W 1, w1 , α. For atomic propositions, and
when α “ β or α “ β1 _ β2, the proof is immediate. We
consider the remaining two cases, namely when α “ 3iβ
or α “p„„piβ.

Assume α “ 3iβ and let W , w , 3iβ. The proof is as
for basic modal logic: Suppose v1 P R1

ipw1q. Since wEw1,
there is some v P Ripwq with vEv1. Therefore W , v , β,
and hence W 1, v1 , β by the induction hypothesis. It fol-
lows that W 1, w1 , 3iβ. A symmetric argument applies if
W 1, w1 , 3iβ.

Assume α “ p„„piβ and let W , w , p„„piβ. Suppose v1 P
mină R1

ipw1q. Since wEw1, there is some v P mină Ripwq
with vEv1. Therefore W , v , β, and hence W 1, v1 , β by
the induction hypothesis. It follows that W 1, w1 , p„„piβ. A
symmetric argument applies if W 1, w1 , 3iβ.

We now turn to bisimulations between R-ordered models.
As above, two worlds are bisimilar if they satisfy the same
atomic information and their modal accessibility structures
match, both in terms of accessible worlds and in terms of
preference of accessibility.

Definition 12 (R-ordered bisimulation) Let R-ordered
models R “ xW,R,V,Îy and R1 “ xW1,R1,V1,Î1y. A
bisimulation between R and R1 is a non-empty binary
relation E Ď W ˆ W1 such that, whenever wEw1, we have
that:

1. For every p P P , R, w , p if and only if R1, w1 , p;
2. if wRiv, then there exists a world v1 in W1 such that vEv1

and w1R1
iv

1, and

• if wv P minÎi Rwi , then w1v1 P minÎ1
i

R1w1
i ;

3. if w1R1
iv

1, then there exists a world v in W such that vEv1
and wRiv, and
• if w1v1 P minÎ1

i
R1w1
i , then wv P minÎi

Rwi .

19

Lemma 3 (R-ordered bisimulation invariance lemma)
If E is a bisimulation between R “ xW,R,V,Îy and
R1 “ xW1,R1,V1,Î1y, w P W and w1 P W1, and wEw1, then
w and w1 satisfy the same modal sentences in the extended
language Lp„„„p.

Proof:
The proof is by structural induction on α P Lp„„„p and is similar
to that of Lemma 2. We show that, for any w,w1 P W, if
wEw1, then R, w , α iff R1, w1 , α. We only prove the
case when α “p„„„piβ.

Assume α “ p„„„piβ and let R, w , p„„„piβ. Suppose w1v1 P
minÎ1

i
R1w1
i . Since wEw1, there is some wv P minÎi Rwi

with vEv1. Therefore R, v , β, and hence R1, v1 , β by
the induction hypothesis. It follows that R1, w1 , p„„„piβ. A
symmetric argument applies if R1, w1 , p„„„piβ.

The relationship between Lp„„„p and Lp„„p, and between R-
ordered and W-ordered models, can be made precise using
bisimulations. We first show that Lp„„„p is at least as expressive
as Lp„„p: Given a sentence α P Lp„„p, let αp„„„p be the sentence ob-
tained by replacing all occurrences of p„„pi in α with p„„„pi.
Definition 13 Let W “ xW,R,V,ăy be a W-ordered
model. For any u, v, w P W such that wRiu and wRiv and
u ă v, let wu Îi wv. Then RW “ xW,R,V,Îy is the
R-ordered model induced by W .

Lemma 4 For any α P Lp„„p, W “ xW,R,V,ăy and w P W,
W , w , α if and only if in the R-ordered model RW “
xW,R,V,Îy induced by W , RW , w , αp„„„p.

Proof:
The proof is simple and proceeds by structural induction on
the sentence α.

Lemma 4 shows that, if α and β are not equivalent in Lp„„p,
then their translations αp„„„p and β p„„„p are also not equivalent in
Lp„„„p. Further, if pW , wq and pW 1, w1q are distinguishable by
some α P Lp„„p, say, W , w , α and W 1, w1 . α, then RW and
R1

W are distinguishable by αp„„„p P Lp„„„p. Hence, Lp„„„p is at least as
expressive as Lp„„p.

The converse of this result may not be as obvious to see,
and translating R-ordered models to W-ordered models re-
quires more care. The light switch example (Figure 1) shows
that, even in the case of a single modality, there is no direct
translation of a preference order on R to a preference order
on W. There is no order on the two worlds w1 and w2 such
that w1 is the preferred result of toggling the light switch
when the light is off, but w2 is the preferred result when the
light is on. A further problematic aspect is that R-ordered
models allow for a preference order on each accessibility re-
lation, whereas a W-ordered semantics assume a single com-
mon preference order on worlds.

Definition 14 Let R “ xW,R,V,Îy be an R-ordered
model with single accessibility relation R1. Let W1 “ WˆW;
let V1puwq “ Vpwq; let uvR1

1vw whenever vR1w, and let
uv ă u1v1 whenever uv Î u1v1. Then WR “ xW1,R1,V1,ăy
is the W-ordered model induced by R.

As an example, we apply Definition 14 to obtain the W-
ordered models induced by the models of Figures 1 and 2,

and depicted in Figure 7 and Figure 8 respectively. Note that
in Figure 7, w1w2 ă w1w1 and w2w1 ă w2w2, reflecting
the intuition of normal execution of the action as an order
on worlds. In Figure 8, the order on worlds is reversed, with
w1w1 ă w1w2 and w2w2 ă w2w1, depicting the intuition
of defeasible knowledge of the agent as an order on worlds.

w1w20

w1w11 w2w2 0

w2w1 1

Figure 7: The induced W-ordered possible-worlds model for
one action (toggle) and one atom (on).

w1w20

w1w11 w2w2 0

w2w1 1

Figure 8: The induced W-ordered possible-worlds model for
one agent (M) and one atom (correct).

Theorem 1 Let R “ xW,R,V,Îy be an R-ordered model
with a single accessibility relation R1 and let WR “
xW,R,V,ăy be the W-ordered model induced by R. Let
RWR “ xW1,R1,V1,Î1y be the R-ordered model induced by
WR. Then there is a full bisimulation between R and RWR ,
i.e., with domain W and range WˆW.

Proof:
Let E be defined by: wEvw for all v, w P W. We need to
show that E is a full bisimulation relation. So, let u, v P W.
Then vEuv.

1. It follows immediately from the construction of RWR that
v and uv satisfy the same atomic propositions.

2. Suppose vR1w. It follows again from the construction
of RWR that uvR1

1vw and wEvw. Further, if vw P
minÎ1

Rv1 , then vw P mină R1puvq, and hence vw P
minÎ1

1
pR1

1quv .

20 preferential modalities revisited

3. Suppose uvR1
1vw. It again follows from the construc-

tion of RWR that vR1w and wEvw. Further, if vw P
minÎ1

1
pR1

1quv , then vw P mină R1pwq, and hence vw P
minÎ1 Rv1 .

We illustrate the construction of Theorem 1 by applying
Definition 13 to the induced W-ordered model in Figure 7
to obtain the R-ordered model of Figure 9. In Figure 9, the
dashed arrows represent the preference order Î1. Theorem 1
then states that the R-ordered model of Figure 1 (with the
order as described in the Introduction) is bisimilar to the R-
ordered model of Figure 9, The construction is via the W-
ordered model of Figure 7.

Similarly, the R-ordered model of Figure 2 (again, with
the order as described in the Introduction) is bisimilar to the
R-ordered model of Figure 10, which is constructed via the
W-ordered model of Figure 8.

w1w20

w1w11 w2w2 0

w2w1 1

Figure 9: The induced bisimilar R-ordered model for one
action (toggle) and one atom (on).

w1w20

w1w11 w2w2 0

w2w1 1

Figure 10: The induced bisimilar R-ordered model for one
agent (M) and one atom (correct).

Corollary 1 Lp„„„p and Lp„„p can distinguish between the same
modal propositions when restricted to a single modality.

Proof:
The bisimulation result of Theorem 1 shows that any R-

ordered model is bisimilar to some R-ordered model in-
duced by a W-ordered model. Lemma 3 ensures that bisimi-
lar worlds satisfy the same modal sentences, and that bisim-
ilar models can distinguish between the same modal prop-
erties. We need therefore consider only R-ordered models
induced by some W-ordered model when reasoning about
expressivity. The result then follows from Lemma 4.

Corollary 1 may be seen as a negative result in the sense
that, at least in the monomodal case, no richer language is
obtained when substituting a preference order on the acces-
sibility relation for the preference order on worlds. It is also
clear that the results of Theorem 1 and Corollary 1 can be
generalised to multi-modal languages if multiple preference
relations on W are allowed.

What, then, has been gained? As we have argued, there
are a number of contexts in which an order on the accessibil-
ity relation has an intuitive appeal. The induced W-ordered
models of Definition 13 are technically useful, but intuitively
hard to motivate. However, from an implementation per-
spective, we now know that a reasoner based on a W-ordered
semantics suffices also for reasoning over R-ordered mod-
els. This, together with our previous results (Britz and Varz-
inczak 2013), establish the following:

Corollary 2 Satisfiability checking for monomodal Lp„„„p is
PSPACE-complete.

Discussion and Related Work
It might be worth emphasising that the logics we have in-
vestigated here do not aim at providing a formal account of
the notion of most, as addressed in the study of generalised
quantifiers (Lindström 1966) and, more recently, in a modal
context by Veloso et al. (2009) and Askounis et al. (2012).
Clearly, they are not about degrees of truth, as it has been
studied in fuzzy logics, nor about degrees of possibility and
necessity, as addressed by possibilistic logics (Dubois, Lang,
and Prade 1994). Instead, here we have investigated a rather
complementary notion to those ones, namely that of normal,
expected, practical necessity, which need not rely on major-
ity or degrees of likelihood.

In a sense, the notions we investigated here can be seen as
the qualitative counterpart of possibilistic modalities (Liau
1999; Liau and Lin 1996). (We thank an anonymous referee
for pointing this out to us.) There, each possible world w is
associated with a possibility distribution πw : W ÝÑ r0, 1s,
the intuition of which is to capture the degree of likelihood
(in terms of belief) of all possible worlds w.r.t. w. In that
setting, the pairs pw,w1q for which πwpw1q is maximal cor-
respond here to the most preferred pairs in a single accessi-
bility relation. In this sense, there are strong links between
monomodal p„„„p and the preferential possibilistic semantics
for epistemic reasoning.

Currently, the definition of R-ordered model (Defini-
tion 6) allows only for elements of the same accessibility re-
lation Ri to be ordered (via the respective Îi). More gener-
ally, we could have defined Î as a relation on

Ť
1ďiďn Ri ˆ

21

Ť
1ďiďn Ri, so that we allow pairs pw,w1q belonging to dif-

ferent R-components to be compared as well. An investiga-
tion of the philosophical and practical ramifications of this
alternative definition is left for future work.

We have seen that one can obtain R-ordered models from
W-ordered models by inducing an ordering on edges from
the ordering on worlds. The result is an ‘embedding’ of p„„p
into Lp„„„p. Conversely, in the monomodal case, we can ob-
tain W-ordered models from R-ordered models by induc-
ing an ordering on worlds from an ordering on edges. If we
allow multiple preferences on worlds, the latter result can
easily be generalised, thereby establishing that Lp„„„p and Lp„„p

are equally expressive. This would have an interesting con-
sequence, namely that the notions of ‘normal effects’ and
‘normal executions’ of actions are one and the same. This a
priori counter-intuitive claim is easily justifiable. It turns out
the effects of an action (the worlds one ‘lands’ in) depend
to a large extent on what the current state of the world (the
‘departing’ points) is. In other terms, talking about effects
(tacitly) amounts to talking about pairs pw,w1q, linking both
a context of execution and the action’s outcome. This feature
just carries over when normality is considered.

In this work, we have not addressed the question as to
what an appropriate notion of entailment for Lp„„„p is and have
contented ourselves with the standard (Tarskian) definition,
which is monotonic (and therefore inappropriate in many
contexts). The recent results by Booth et al. (2015) in a
propositional setting may provide us with a springboard to
investigate this matter in more expressive languages such as
those we are interested in here.

Outlook on Further Work
We shall now briefly discuss about possible ideas for explo-
ration stemming from the present work.

R-based Conditionals
A framework for representing and reasoning with defeasi-
bility would not be complete without an account of (defea-
sible) conditionals. Here we catch a glimpse of two versions
thereof which can both be defined in our R-ordered models
semantics.

Given an R-ordered model R, for every propositional sen-
tence α, let Rα :“ tpw,w1q | R, w , α and R, w1 , αu
and Îα its corresponding preference relation. (Of course,
if we work in a finite propositional language, then there are
finitely many of such Rαs and Îαs.) We can then define a
conditional statement as a macro in Lp„„„p as follows:

• α;1 β if and only if p„„„pαβ.

Such a definition, of course, has its limitations, as it only
allows for propositional sentences in the antecedent of the
conditional. A generalisation to the case where α P Lp„„„p

would hardly improve matters, as we would end up with an
infinite number of accessibility relations in the R-component
of our R-ordered models.

Fortunately, we can do better than this. First, we need to
define an extra, identity relation id on W and order its ele-
ments in the same way as for the other R-components. The

intuition of doing so is that the most normal id-arrows cor-
respond to the most normal worlds, i.e., we get an ordering
on worlds induced by the ordering on the elements of the
identity relation. With this, we can define our second candi-
date for a conditional in the following way. First, for every
α P Lp„„„p, let idα :“ tpw,wq P id | R, w , αu. Then

• R , α;2 β if and only if for everyw such that pw,wq P
minÎid idα, it holds that R, w , β.

We shall leave an investigation of the appropriateness
of ;2 as a defeasible conditional for future work.

Next Steps in Preferential Reasoning for DLs
In the context of formal ontologies specified in Description
Logics (Baader et al. 2007), placing a preference order on
binary relations as we proposed here has a natural appeal.
As an example, consider the role name hasChild: ‘Normal’
tuples in this relation may be biological or adopted parent-
child tuples, while an ‘exceptional’ tuple may be an ap-
pointed legal guardian parent-child tuple. In this example,
there is nothing exceptional about either the legal guardian
or the child—the exceptionality lies in the nature of their
relationship.

To make things more precise, given a DL interpretation
I “ x∆I , ¨Iy, we can enrich it with a collection of pref-
erence relations ÎI :“ xÎIr1 , . . . ,ÎIrny, one for each role
name and each of which satisfying the conditions in Defi-
nition 6. Armed with this semantic construction, it becomes
possible to:

• Define defeasible value restrictions (Britz et al. 2013)
of the form

Ž„r.C, like
Ž„hasChild.Male, which refers to

those individuals whose most normal parenting relations
are of male children;

• State defeasible role inclusions of the form r1 Ă„ r2, as in
e.g. parentOf Ă„ progenitorOf, which stipulates that the
role of being a parent is usually that of also being the pro-
genitor;

• State typicality-based role instances in the ABox of the
form ‚rpa, bq, where ‚ is the extension of a typicality
operator (Booth, Meyer, and Varzinczak 2012; Giordano
et al. 2007) to roles, like ‚hasChildpjohn, anneq, convey-
ing the information that, under the interpretation of role
hasChild, the tuple pjohn, anneq is to be regarded as a typ-
ical one;

• State defeasible role properties like in saying that role
marriedTo is normally functional and that partOf is nor-
mally transitive, while allowing for exceptions, i.e., less
normal tuples failing the relation’s property under consid-
eration.

Moreover, definitions analogous to those in the preceding
subsection would allow us to:

• State defeasible concept subsumptions (Britz, Heidema,
and Meyer 2008; Britz, Meyer, and Varzinczak 2011b;
Casini and Straccia 2010; Giordano et al. 2007) of the
form C Ă„ D, as in Mother Ă„ DmarriedTo, of which the
intuition is that usually, mothers are married.

22 preferential modalities revisited

It is an open question whether a result similar to that ob-
tained in Theorem 1 holds in a DL context. Roles can be rei-
fied, similar to the reification of n-ary relations in DLs (Sat-
tler, Calvanese, and Molitor 2007), as a workaround to
model preferences on tuples as preferences on objects in
a DL enriched with a preferential subsumption relation Ă„ .
Nevertheless, it is not immediately clear how the addition
of preferential roles to a DL with preferential subsumption
would affect its expressivity.

Defeasible Comparative Epistemic Logic

By placing a preference relation on the accessibility rela-
tions, we can get to a generalisation of Comparative Epis-
temic Logic (CEL) (Ditmarsch, Hoek, and Kooi 2012).

In CEL, a statement of the form a ľ b intuitively means
“agent b knows at least as much as agent a”. The correspond-
ing semantics is given by:

• M , w , a ľ b if and only if Rbpwq Ď Rapwq.
In the context of our enriched semantic framework, we

could envisage making statements of the form “agent b nor-
mally knows as much as agent a”, of which a semantics can
be given by the condition minÎb

Rwb Ď Rwa .

Summary and Conclusion
The contributions of the present paper can be summarised
as follows: (i) the motivation for and the definition of a se-
mantic structure allowing for the ordering of pairs of worlds
(instead of worlds tout court, as is customary in traditional
NMR formalisms) and (ii) a generalisation of bisimulation
to the preferential case together with a result relating our
new semantics to that we studied in previous work and show-
ing that, in the monomodal case, they are equivalent.

We have introduced a logic allowing for modal operators
the intuition of which is to capture the idea of some transi-
tions being more normal than others. As we have seen, our
R-ordered models can be used to provide the extended lan-
guage with an intuitive and elegant semantics. The resulting
framework provides for an alternative formalisation for the
notion of defeasible necessity we studied previously.

We have given examples, in an action, epistemic and de-
ontic contexts, of what this semantic structure, as simple as
it is, would allow us to represent (or give a meaning to) that
one cannot do with standard Kripkean semantics. Likewise,
we have briefly illustrated the fruitfulness of our definitions
in other formalisms, in particular in a DL setting.

Acknowledgements
This work is based upon research supported in part by the
Brazilian National Council for Scientific and Technological
Development (CNPq) under grant number 302002/2014-6.
This work was also partially funded by the National Re-
search Foundation of South Africa (UIDs 81225 and 85482,
IFR1202160021 and IFR2011032700018).

References
Askounis, D.; Koutras, C.; and Zikos, Y. 2012. Knowledge
means ‘all’, belief means ‘most’. In Fariñas del Cerro, L.;
Herzig, A.; and Mengin, J., eds., Proceedings of the 13th
European Conference on Logics in Artificial Intelligence
(JELIA), number 7519 in LNCS, 41–53. Springer.
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P., eds. 2007. The Description Logic Hand-
book: Theory, Implementation and Applications. Cambridge
University Press, 2 edition.
Baltag, A., and Smets, S. 2006. Dynamic belief revision
over multi-agent plausibility models. In van der Hoek, W.,
and Wooldridge, M., eds., Proceedings of LOFT, 11–24.
University of Liverpool.
Baltag, A., and Smets, S. 2008. A qualitative theory of dy-
namic interactive belief revision. In Bonanno, G.; van der
Hoek, W.; and Wooldridge, M., eds., Logic and the Founda-
tions of Game and Decision Theory (LOFT7), number 3 in
Texts in Logic and Games, 13–60. Amsterdam University
Press.
Blackburn, P.; Benthem, J.; and Wolter, F. 2006. Handbook
of Modal Logic. Elsevier North-Holland.
Booth, R.; Casini, G.; Meyer, T.; and Varzinczak, I. 2015.
On the entailment problem for a logic of typicality. In Pro-
ceedings of the 24th International Joint Conference on Arti-
ficial Intelligence (IJCAI).
Booth, R.; Meyer, T.; and Varzinczak, I. 2012. PTL: A
propositional typicality logic. In Fariñas del Cerro, L.;
Herzig, A.; and Mengin, J., eds., Proceedings of the 13th
European Conference on Logics in Artificial Intelligence
(JELIA), number 7519 in LNCS, 107–119. Springer.
Boutilier, C. 1994. Conditional logics of normality: A modal
approach. Artificial Intelligence 68(1):87–154.
Britz, K., and Varzinczak, I. 2013. Defeasible modalities. In
Proceedings of the 14th Conference on Theoretical Aspects
of Rationality and Knowledge (TARK), 49–60.
Britz, K.; Casini, G.; Meyer, T.; and Varzinczak, I. 2013.
Preferential role restrictions. In Proceedings of the 26th In-
ternational Workshop on Description Logics, 93–106.
Britz, K.; Heidema, J.; and Meyer, T. 2008. Semantic pref-
erential subsumption. In Lang, J., and Brewka, G., eds.,
Proceedings of the 11th International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR),
476–484. AAAI Press/MIT Press.
Britz, K.; Meyer, T.; and Varzinczak, I. 2011a. Preferential
reasoning for modal logics. Electronic Notes in Theoreti-
cal Computer Science 278:55–69. Proceedings of the 7th
Workshop on Methods for Modalities (M4M’2011).
Britz, K.; Meyer, T.; and Varzinczak, I. 2011b. Seman-
tic foundation for preferential description logics. In Wang,
D., and Reynolds, M., eds., Proceedings of the 24th Aus-
tralasian Joint Conference on Artificial Intelligence, number
7106 in LNAI, 491–500. Springer.
Casini, G., and Straccia, U. 2010. Rational closure for de-
feasible description logics. In Janhunen, T., and Niemelä, I.,

23

eds., Proceedings of the 12th European Conference on Log-
ics in Artificial Intelligence (JELIA), number 6341 in LNCS,
77–90. Springer-Verlag.
Ditmarsch, H.; Hoek, W.; and Kooi, B. 2012. Local proper-
ties in modal logic. Artificial Intelligence 187:133–155.
Dubois, D.; Lang, J.; and Prade, H. 1994. Possibilistic logic.
In Gabbay, D.; Hogger, C.; and Robinson, J., eds., Handbook
of Logic in Artificial Intelligence and Logic Programming,
volume 3. Oxford University Press. 439–513.
Giordano, L.; Olivetti, N.; Gliozzi, V.; and Pozzato, G.
2007. Preferential description logics. In Dershowitz, N.,
and Voronkov, A., eds., Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR), number 4790 in LNAI,
257–272. Springer.
Hansson, B. 1969. An analysis of some deontic logics. Noûs
3:373–398.
Katsuno, H., and Mendelzon, A. 1991. Propositional knowl-
edge base revision and minimal change. Artificial Intelli-
gence 3(52):263–294.
Kraus, S.; Lehmann, D.; and Magidor, M. 1990. Nonmono-
tonic reasoning, preferential models and cumulative logics.
Artificial Intelligence 44:167–207.
Lehmann, D., and Magidor, M. 1992. What does a condi-
tional knowledge base entail? Artificial Intelligence 55:1–
60.
Lewis, D. 1973. Counterfactuals. Blackwell.
Lewis, D. 1974. Semantic analyses for dyadic deontic logic.
In Stenlund, S., ed., Logical Theory and Semantic Analysis.
D. Reidel Publishing Company. 1–14.
Liau, C.-J., and Lin, B.-P. 1996. Possibilistic reasoning–a
mini-survey and uniform semantics. Artificial Intelligence
88(1-2):163–193.
Liau, C.-J. 1999. On the possibility theory-based semantics
for logics of preference. International Journal of Approxi-
mate Reasoning 20(2):173–190.
Lindström, P. 1966. First-order predicate logic with gener-
alized quantifiers. Theoria 32:286–195.
Makinson, D. 2005. Bridges from Classical to Nonmono-
tonic Logic, volume 5 of Texts in Computing. King’s College
Publications.
Sattler, U.; Calvanese, D.; and Molitor, R. 2007. Relation-
ships with other formalisms. In Baader et al. (2007). chap-
ter 4, 149–192.
Shoham, Y. 1988. Reasoning about Change: Time and Cau-
sation from the Standpoint of Artificial Intelligence. MIT
Press.
Stalnaker, R. 1968. A theory of conditionals. In Rescher,
N., ed., Studies in Logical Theory. Blackwell. 98–112.
Veloso, P.; Veloso, S.; Viana, J.; de Freitas, R.; Benevides,
M.; and Delgado, C. 2009. On vague notions and modalities:
a modular approach. Logic Journal of the IGPL 18(3):381–
402.

24 preferential modalities revisited

Properties of ABA+ for Non-Monotonic Reasoning

Kristijonas Čyras and Francesca Toni
Imperial College London, UK

Abstract
We investigate properties of ABA+, a formalism that ex-
tends the well studied structured argumentation formalism
Assumption-Based Argumentation (ABA) with a preference
handling mechanism. In particular, we establish desirable
properties that ABA+ semantics exhibit. These pave way
to the satisfaction by ABA+ of some (arguably) desirable
principles of preference handling in argumentation and non-
monotonic reasoning, as well as non-monotonic inference
properties of ABA+ under various semantics.

1 Introduction
Recent decades have seen a number of non-monotonic rea-
soning (NMR) formalisms advanced (see e.g. (Brewka,
Niemelä, and Truszczyński 2007) for an overview). Since
preferences are ubiquitous in common-sense reasoning,
there has been a considerable effort to integrate prefer-
ence information within NMR formalisms (cf. e.g. (Brewka,
Truszczyński, and Niemelä 2008; Delgrande et al. 2004;
Domshlak et al. 2011; Kaci 2011)). To evaluate distinct
formalisms, various properties of both non-monotonic in-
ference and preference handling have been proposed, see
e.g. (Makinson 1988; Kraus, Lehmann, and Magidor 1990;
Brewka and Eiter 1999; Brewka, Truszczyński, and Woltran
2010; Šimko 2014).

Meanwhile, argumentation (as overviewed in (Rahwan
and Simari 2009)) has become an established branch of AI
widely used for NMR (see e.g. (Dung 1995; Bondarenko
et al. 1997; Modgil and Prakken 2013)). Broadly speak-
ing, information in argumentation is represented via argu-
ments, while attacks among them indicate conflicts. Proce-
dures, known as argumentation semantics, are employed to
select extensions, i.e. sets of collectively acceptable argu-
ments. Preferences in argumentation also play a significant
role (cf. e.g. (Simari and Loui 1992; Kaci 2011)), by al-
lowing to, for instance, discriminate among arguments or
extensions. Over the years, numerous formalisms of argu-
mentation with preferences have been presented (see Section
7) and some properties for argumentation with preferences
indicated (e.g. (Brewka, Truszczyński, and Woltran 2010;
Modgil and Prakken 2013; Amgoud and Vesic 2014; Dung
2016)).

NMR properties are also adaptable to argumentation set-
ting. For example, the well known non-monotonic inference

properties of Cautious Monotonicity and Cumulative Tran-
sitivity (cf. (Makinson 1988; Kraus, Lehmann, and Magidor
1990)) concern what happens when a conclusion reached
through a reasoning process is added to the knowledge base
to reason with anew. These properties have been cast with
respect to extensions in argumentation, in e.g. (Čyras and
Toni 2015; Dung 2016).

Preference handling properties for NMR can be phrased
in terms of extensions in argumentation too. For instance,
the well known Principle I from (Brewka and Eiter 1999)
regarding preferred answer sets can be applied to argumen-
tation semantics thus: if two extensions E1 and E2 coincide
except for two arguments A ∈ E1 \ E2 and B ∈ E2 \ E1

such that A is preferred over B, thenE2 should not be chosen
as a ‘preferable’ extension. Likewise, a common property of
NMR says that, in the absence of preference information, a
formalism extended with a preference handling mechanism
should return the same extensions as the preference-free ver-
sion of the formalism (see e.g. (Brewka, Truszczyński, and
Woltran 2010; Šimko 2014)).

In this paper, drawing from the above mentioned works,
we investigate various properties of a recently proposed
NMR formalism ABA+ (Čyras and Toni 2016). ABA+ ex-
tends with a preference handling mechanism a well es-
tablished argumentation formalism, Assumption-Based Ar-
gumentation (ABA) (Bondarenko et al. 1997; Toni 2014).
Whereas a common way to approach preferences in ar-
gumentation is to use preference information to discard
the attacks from arguments that are less preferred than
the ones they attack (see e.g. (Amgoud and Cayrol 2002;
Bench-Capon 2003; Kaci and van der Torre 2008; Brewka
et al. 2013; Besnard et al. 2014)), ABA+ instead reverses
such attacks. We show that ABA+’s method of accounting
for preferences satisfies (arguably) desirable properties.

On the one hand, we consider preference handling prop-
erties from (Brewka and Eiter 1999; Brewka, Truszczyński,
and Woltran 2010; Amgoud and Vesic 2014) and show their
satisfaction under various ABA+ semantics. On the other
hand, building on the investigations of Cumulative Tran-
sitivity and Cautious Monotonicity for ABA (Čyras and
Toni 2015), we analyse ABA+ in the light of these non-
monotonic inference properties, and show that results ob-
tained for ABA carry over to ABA+. In addition, we make
use of the well known principle of Contraposition of rules

25

(see e.g. (Modgil and Prakken 2013)) and prove it guar-
antees that ABA+ semantics satisfy desirable properties
akin to those in e.g. (Dung 1995; Bondarenko et al. 1997;
Modgil and Prakken 2013).

The paper is organized as follows. Sections 2 and 3 give
preliminaries on ABA and ABA+. In Section 4 ABA+ se-
mantics are analysed. Preference handling properties of
ABA+ are studied in Section 5, while Section 6 concerns
ABA+ and non-monotonic inference properties. After dis-
cussing related work (Section 7), we conclude in Section 8.

2 Preliminaries
We base the following ABA background on (Toni 2014).
Definition 1. An ABA framework is a tuple (L,R,A,̄ ¯̄),
where:
• (L,R) is a deductive system with a language L and a set
R of rules of the form ϕ0 ← ϕ1, . . . , ϕm with m > 0
and ϕi ∈ L for i ∈ {0, . . . ,m}; ϕ0 is referred to as the
head of the rule, and ϕ1, . . . , ϕm is referred to as the body
of the rule; if m = 0, then the rule ϕ0 ← ϕ1, . . . , ϕm is
written as ϕ0 ← > and is said to have an empty body;

• A ⊆ L is a non-empty set, whose elements are referred to
as assumptions;

• ¯̄̄ : A → L is a total map: for α ∈ A, the L-formula α is
referred to as the contrary of α.
We focus on flat ABA frameworks, where no assumption

is the head of any rule. Flat ABA frameworks are very com-
mon, and capture, as instances, widely used paradigms of
non-monotonic reasoning, such as Logic Programming and
Default Logic (see e.g. (Bondarenko et al. 1997)).
Definition 2. A deduction for ϕ ∈ L supported by S ⊆ L
andR ⊆ R, denoted by S `R ϕ, is a finite tree with the root
labelled by ϕ, leaves labelled by > or elements from S, the
children of non-leaf nodes ψ labelled by the elements of the
body of some rule fromR with head ψ, and R being the set
of all such rules. For E ⊆ L, the conclusions Cn(E) of E
is the set of elements with deductions supported by S ⊆ E
and some R ⊆ R, i.e. Cn(E) = {ϕ ∈ L : ∃ S `R ϕ, S ⊆
E, R ⊆ R}.

Assumption-level attacks in ABA are defined thus.
Definition 3. A set A ⊆ A attacks a set B ⊆ A, denoted
A B, if there is a deduction A′ `R β, for some β ∈ B,
supported by some A′ ⊆ A and R ⊆ R. For E ⊆ A, also
called an extension, we say that:
• E is conflict-free if E 6 E;
• E defends α ∈ A if for allB {α} it holds thatE B;
• E is admissible if E is conflict-free and defends all α ∈
E.
The most standard ABA semantics are as follows.

Definition 4. A conflict-free set E ⊆ A is:
• stable, if E {β} for every {β} ⊆ A \ E;
• complete if E is admissible and contains every assump-

tion it defends;
• preferred if E is ⊆-maximally admissible;
• grounded if E is ⊆-minimally complete;
• ideal if E is ⊆-maximal such that E is admissible and

contained in all preferred extensions.

Example 5. Let L = {α, β, α, β}, R = {α ← β} and
A = {α, β}. In (L,R,A,̄ ¯̄), {β} attacks both {α} and
{α, β}, while {α, β} attacks itself and {α}. (L,R,A,̄ ¯̄) can
be graphically represented via its assumption framework,
pictured below (in illustrations of assumption frameworks,
nodes hold sets of assumptions while directed edges indi-
cate attacks):

∅ {α} {β} {α, β}

This (L,R,A,̄ ¯̄) has a unique complete extension {β},
which is also grounded, ideal, preferred and stable, and has
conclusions Cn({β}) = {α, β}.

3 ABA+

ABA+ (Čyras and Toni 2016) extends ABA with prefer-
ences as follows.
Definition 6. An ABA+ framework is any tuple
(L,R,A,̄ ¯̄,6), where (L,R,A,̄ ¯̄) is an ABA frame-
work and 6 is a preorder (i.e. a transitive and reflexive
binary relation) on A.

Differently from e.g. (Modgil and Prakken 2013; 2014;
Garcı́a and Simari 2014), ABA+ considers preferences on
assumptions rather than (defeasible) rules. This is not, how-
ever, a conceptual difference, since assumptions are the only
defeasible component in ABA+.

Unless stated differently, we consider a fixed, but oth-
erwise arbitrary ABA+ framework (L,R,A,̄ ¯̄,6), and
implicitly assume (L,R,A,̄ ¯̄) to be its underlying ABA
framework. The strict counterpart < of 6 is defined as
α < β iff α 6 β and β
 α, for any α and β.

ABA+ attack relation is given thus.
Definition 7. A set A ⊆ A of assumptions <-attacks a set
B ⊆ A of assumptions, written as A < B, if:
• either there is a deduction A′ `R β, for some β ∈ B,

supported by A′ ⊆ A, and @α′ ∈ A′ with α′ < β;
• or there is a deduction B′ `R α, for some α ∈ A, sup-

ported by B′ ⊆ B, and ∃β′ ∈ B′ with β′ < α.
The first type of attack is called normal, and the second one
reverse.

ABA+ requires a standard ABA attack to be reversed
whenever the attacker has an assumption less preferred than
the one attacked. The following example illustrates.
Example 8. Recall (L,R,A,̄ ¯̄) from Example 5. Suppose
β < α. In the ABA+ framework (L,R,A,̄ ¯̄,6), {β} ‘tries’
to attack {α}, but is prevented by the preference β < α. In-
stead, {α} <-attacks {β}, and likewise {α, β}, via reverse
attack, and the latter <-attacks both itself and {β} via re-
verse attack. (L,R,A,̄ ¯̄,6) can be represented graphically
as follows (reverse attacks in assumption frameworks will
be denoted by dotted arrows):

∅ {α} {β} {α, β}

In contrast with the ABA framework, where {β} is
unattacked and generates an attack on {α}, in the

26 properties of aba+ for non-monotonic reasoning

ABA+ framework, {α} is <-unattacked and <-attacks all
sets of assumptions that contain β. This concords with the
intended meaning of the preference β < α, that the conflict
should be resolved in favour of α.

This concept of <-attack reflects the interplay between
deductions, contraries and preferences, by representing in-
herent conflicts among sets of assumptions while account-
ing for preference information. Normal attacks follow the
standard notion of attack in ABA, additionally, preventing
the attack to succeed when the attacker uses assumptions
less preferred than the one attacked. Reverse attacks, mean-
while, resolve the conflict between two sets of assumptions
by favouring the one containing an assumption whose con-
trary is deduced, over the one which uses less preferred as-
sumptions to deduce that contrary.

The notions of conflict-freeness and defence w.r.t. <,
and ABA+ semantics are given as follows.

Definition 9. For E ⊆ A we say that:
• E is <-conflict-free if E 6 < E;
• E <-defends α ∈ A if for all B < {α} it holds that
E < B; and

• E is <-admissible if E is <-conflict-free and <-defends
every α ∈ E.

In Example 8, ∅, {α} and {β} are conflict-free in
(L,R,A,̄ ¯̄) and<-conflict-free in (L,R,A,̄ ¯̄,6), whereas
{α, β} is not (<-)conflict-free in either framework.

Definition 10. A <-conflict-free extension E ⊆ A is:
• <-stable if E < {α} for every {α} ⊆ A \ E;
• <-complete if E is <-admissible and contains every as-

sumption it <-defends;
• <-preferred if E is ⊆-maximally <-admissible;
• <-grounded if E is ⊆-minimally <-complete;
• <-ideal if E is ⊆-maximal such that E is <-admissible

and contained in all <-preferred extensions.

In Example 8, {α} is a unique <-stable, <-complete, <-
preferred, <-grounded and <-ideal extension.

Henceforth, we assume σ ∈ {stable, complete, preferred,
grounded, ideal} and use <-σ to denote any ABA+ seman-
tics.

We recall several features that ABA+ possesses and that
will be used later.

Lemma 1. Let A′ ⊆ A ⊆ A and B′ ⊆ B ⊆ A be given. If
A′ < B′, then A < B.

Lemma 2. For any A,B ⊆ A:
• if A B, then either A < B or B < A;
• if A < B, then either A B or B A.

4 Properties of ABA+ Semantics
To ensure that the familiar relations between semantics carry
from ABA over to ABA+, we want to guarantee the so-
called Fundamental Lemma (Dung 1995; Bondarenko et al.
1997) (see below). To this end, we follow the well estab-
lished structured argumentation formalism ASPIC+ (Mod-
gil and Prakken 2013; 2014) and impose the principle of
Contraposition, reformulated for ABA+ as follows.

Axiom 11. (L,R,A,̄ ¯̄,6) satisfies the Axiom of Contra-
position if for all A ⊆ A, R ⊆ R and β ∈ A it holds that
if A `R β, then for every α ∈ A, there is Rα ⊆ R with
(A \ {α}) ∪ {β} `Rα α.

This axiom requires that if an assumption plays a role in
deriving the contrary of another assumption, then it should
contrapositively be possible for the latter to induce a deriva-
tion of the contrary of the former assumption too. The fol-
lowing example illustrates the effect Contraposition has in
ABA+.

Example 12. Let R = {β ← α, γ}, A = {α, β, γ} and
α < β, α < γ. (The language and the contrary map-
ping are implicit from R and A.) This ABA+ framework
(L,R,A,̄ ¯̄,6) does not satisfy the Axiom of Contraposi-
tion. Its assumption framework (omitting ∅,A and<-attacks
to and from A) is shown below:

{α}
{β}

{γ}

{α, β}
{α, γ}

{β, γ}

There are no extensions under, for instance, <-complete se-
mantics, because all the singletons {α}, {β} and {γ} are
<-unattacked, but {α, β, γ} is not <-conflict-free.

If the rules α ← β, γ and γ ← α, β are added to R
to constitute R′, then the resulting (L,R′,A,̄ ¯̄,6) satisfies
the Axiom of Contraposition and its assumption framework
looks as follows (<-attacks that are both normal and reverse
are depicted as solid directed edges):

{α}

{β}

{γ}

{α, β}

{α, γ}

{β, γ}

Here, {β, γ} is a unique <-complete extension.

We prove next that in the presence of Contraposition, the
Fundamental Lemma is guaranteed to hold in ABA+.

Lemma 3. Suppose that (L,R,A,̄ ¯̄,6) satisfies the Axiom
of Contraposition. Let S ⊆ A be <-admissible and assume
that S <-defends α, α′ ∈ A. Then S ∪ {α} is <-admissible
and <-defends α′.

Proof. Note that if α ∈ S, then S ∪ {α} is trivially <-
admissible. So assume α 6∈ S and suppose for a contradic-
tion that S ∪ {α} is not <-admissible. Then it is either not
<-conflict-free, or does not <-defend itself. Suppose first
S ∪ {α} < S ∪ {α} via either (1) normal or (2) reverse
attack. We show that either leads to a contradiction.

1. S ∪ {α} < S ∪ {α} via normal attack. As S is <-
conflict-free and<-defends α, this<-attack must involve α.
I.e. S′ ∪ {α} `R β for some S′ ⊆ S and β ∈ S ∪ {α},
and ∀s′ ∈ S′ ∪ {α} we find s′ 6< β. If β = α, then S′ ∪
{α} < {α}, and so S < S′ ∪ {α}. Else, if β ∈ S′, then

27

S′ ∪ {α} < S, and so S < S′ ∪ {α} as well. We show
that we can similarly obtain S < S′ ∪{α} in case (2) too.

2. S∪{α} < S∪{α} via reverse attack. As in 1., this<-
attack must involve α, i.e. S′ ∪ {α} `R β for some S′ ⊆ S
and β ∈ S ∪ {α}, and ∃s′ ∈ S′ ∪ {α} such that s′ < β. If
β ∈ S, then S < S′∪{α}. Else, if β = α, then s′ 6= α (by
asymmetry of<), and using the Axiom of Contraposition we
findA `R′

s′ forA ⊆ (S′∪{α})\{s′}, so that S′∪{α}
S. Then, by Lemma 2, either S′ ∪ {α} < S or S <

S′ ∪ {α}, which yields S < S′ ∪ {α} in any case.
In either (1) or (2), S < S′ ∪ {α}, and as S is <-

conflict-free and <-defends α, this <-attack must be reverse
and involve α: A1 ∪ {α} `R1 s1, s1 ∈ S, A1 ⊆ S′, and
∃s′1 ∈ A1 with s′1 < s1. Without loss of generality take
s′1 to be 6-minimal such. By the Axiom of Contraposition,
there is S1 ∪ {α} `R

′
1 s′1 with S1 ⊆ (A1 \ {s′1}) ∪ {s1}

and ∀x ∈ S1 x 6< s′1 (by 6-minimality of s′1). That is,
S1 ∪ {α} < A1, so we find S < S1 ∪ {α}, again via
reverse attack involving α: A2 ∪ {α} `R2 s2, s2 ∈ S,
A2 ⊆ S1, and ∃s′2 ∈ A2 with s′2 < s2. We again im-
pose 6-minimality on s′2 and by the Axiom of Contrapo-
sition get S2 ∪ {α} `R

′
2 s′2, S2 ⊆ (A2 \ {s′2}) ∪ {s2} and

∀x ∈ S2 x 6< s′2.
As deductions are finite and < asymmetric, the procedure

described above will eventually exhaust pairs of s′k ∈ Ak
and sk ∈ Sk such that s′k < sk, so that S < Sk ∪{α} will
have to be a normal attack, for some k. But this leads to a
contradiction to S being <-admissible and <-defending α.

Hence, by contradiction, S ∪ {α} is <-conflict-free.
We now want to show that S ∪ {α} <-defends itself. So

let B < S ∪ {α}. As S is <-admissible and <-defends
α, we consider this <-attack to be reverse and involving α:
S′ ∪ {α} `R β1, S′ ⊆ S, β1 ∈ B, and ∃s′ ∈ S′ ∪ {α}
with s′ < β1. By the Axiom of Contraposition, S1 `R

′
1

s′, S1 ⊆ ((S′ ∪ {α}) \ {s′}) ∪ {β1}. Thus, S1 {s′},
whence S ∪ {α} < S1. This <-attack cannot be normal
on (S′ ∪{α}) \ {s′}, due to <-conflict-freeness of S ∪{α};
while, if it is normal on β1, then S∪{α} < B, as required.
Else, S ∪ {α} < S1 via reverse attack: B1 `R1 s1, s1 ∈
S ∪ {α}, B1 ⊆ S1, and ∃s′1 ∈ B1 with s′1 < s1. Due
to <-conflict-freeness of S ∪ {α}, we find β1 ∈ B1. Then
again, by the Axiom of Contraposition, we find S2 `R

′
2 s′1,

S2 ⊆ (B1 \ {s′1}) ∪ {s1}, and β1 ∈ S2. Like with the proof
of <-conflict-freeness, this process must terminate with a
normal attack S ∪ {α} < B, so that S ∪ {α} eventually
<-defends itself.

Finally, given that S <-defends α′ to begin with, using
Lemma 1 we conclude that S ∪ {α} <-defends α′ too.

For the rest of this section, we assume that (L,R,A,̄ ¯̄,6)
satisfies the Axiom of Contraposition.

We can now define the <-defence operator Def, inspired
by (Dung 1995).

Definition 13. Def : ℘(A) → ℘(A) is defined as follows:
for A ⊆ A, Def(A) = {α ∈ A : A <-defends α}.

By Lemma 1, Def is monotonic: if A ⊆ B ⊆ A, then
Def(A) ⊆ Def(B). Hence, Def has a unique least fixed

point, which is in addition a unique <-grounded extension
of (L,R,A,̄ ¯̄,6), as shown next.

Proposition 4. (L,R,A,̄ ¯̄,6) admits a unique <-
grounded extension.

Proof. First, observe that ∅ is <-admissible in
(L,R,A,̄ ¯̄,6). The least fixed point G can be given
as

⋃
i∈N Def i(∅). By Lemma 3, G is <-admissible. It

is clearly <-complete (as G = Def(G)) and unique ⊆-
minimal such (as the least fixed point). Hence, G is a unique
<-grounded extension of (L,R,A,̄ ¯̄,6).

As a consequence of Proposition 4, we get the following.

Corollary 5. (L,R,A,̄ ¯̄,6) admits a <-complete exten-
sion.

Using Lemma 3, we can prove the following results.

Proposition 6. (L,R,A,̄ ¯̄,6) admits a <-preferred exten-
sion.

Proof. By Lemma 3, the collection of <-admissible super-
sets of ∅ is partially ordered by subset inclusion ⊆, so any
sequence ∅ ⊆ A1 ⊆ . . . ⊆ An ⊆ . . . of <-admissible
sets of assumptions (for n an ordinal) has an upper bound
A =

⋃
i>0Ai. Then A ⊆ A is <-admissible: if it were

not <-conflict-free, then some An would not be either; and
for any B < A we have B < An, for some n, so that
An < B, and hence A < B too. Since every chain
∅ ⊆ A1 ⊆ . . . ⊆ An ⊆ . . . admits an <-admissible upper
bound, every such chain has a ⊆-maximally <-admissible
set of assumptions, according to Zorn’s Lemma. As ∅ is <-
admissible, (L,R,A,̄ ¯̄,6) admits at least one⊆-maximally
<-admissible—i.e. a <-preferred—extension.

Proposition 7. Every <-preferred extension of
(L,R,A,̄ ¯̄,6) is a <-complete extension too.

Proof. Let E be a <-preferred extension of (L,R,A,̄ ¯̄,6)
and suppose for a contradiction that it is not <-complete.
Let E <-defend some α ∈ A \ E. As E is <-admissible,
E∪{α} is<-admissible, by Lemma 3. But then E is not⊆-
maximally <-admissible, contrary to E being <-preferred.
Hence, by contradiction, E must be <-complete.

Further, as in ABA, <-stable semantics is subsumed by
both <-preferred and <-complete semantics, as shown next.

Proposition 8. Any <-stable extension of (L,R,A,̄ ¯̄,6) is
a <-preferred extension too.

Proof. Let E be a <-stable extension of (L,R,A,̄ ¯̄,6). As
E <-attacks every {β} * E, it must be ⊆-maximally <-
admissible. Hence, E is <-preferred.

Proposition 9. Any <-stable extension of (L,R,A,̄ ¯̄,6) is
a <-complete extension too.

Proof. LetE be a<-stable extension of (L,R,A,̄ ¯̄,6). For
any β 6∈ E, <-stability of E means that E < {β}, and if
E <-defended β as well, it would mean that E < E, con-
tradicting its <-conflict-freeness. Hence, E contains every
assumption it <-defends, and so is <-complete.

28 properties of aba+ for non-monotonic reasoning

Finally, we consider <-ideal semantics.
Proposition 10. (L,R,A,̄ ¯̄,6) admits a unique <-ideal
extension.

Proof. From Proposition 6 we know that (L,R,A,̄ ¯̄,6) ad-
mits <-preferred extensions, so let S be their intersection. If
S = ∅, then it is <-admissible, and so an <-ideal exten-
sion (unique). If S 6= ∅ is <-admissible, then it is an <-
ideal extension (unique as well). Else, assume S 6= ∅ is not
<-admissible. Then its ⊆-maximally <-admissible subsets
I (S are <-ideal extensions of (L,R,A,̄ ¯̄,6). Suppose
I and I ′ are two distinct <-admissible subsets of S. Then
their union I ∪ I ′ is a subset of S too, and so <-conflict-
free. By Lemma 3, I ∪ I ′ <-defends its assumptions, so
must be <-admissible. Consequently, there can be only one
⊆-maximally <-admissible subset of S, i.e. (L,R,A,̄ ¯̄,6)
has a unique <-ideal extension.

Proposition 11. Any<-ideal extension of (L,R,A,̄ ¯̄,6) is
a <-complete extension too.

Proof. By Proposition 10, it has a unique <-ideal exten-
sion I . Suppose for a contradiction that I is not<-complete.
Then there is α ∈ A \ I <-defended by I . Such α must be
contained in the intersection S of <-preferred extensions of
(L,R,A,̄ ¯̄,6), because I ⊆ S <-defends α and every <-
preferred extension E of (L,R,A,̄ ¯̄,6) is <-complete (by
Proposition 7). But then, I ∪ {α} is <-admissible, accord-
ing to Lemma 3, so that I is not <-ideal—a contradiction.
Therefore, I must be <-complete.

These properties that ABA+ exhibits in the presence of
Contraposition will be used to show, in the coming sec-
tions, that ABA+ satisfies certain principles of preference
handling and non-monotonic reasoning.

5 Preference Handling Properties
Referring to (Amgoud and Vesic 2009), in (Brewka,
Truszczyński, and Woltran 2010) the authors hinted at two
(arguably) desirable properties of argumentation formalisms
dealing with preferences, that concern conflict preservation
and the absence of preferences. In the next two subsections
we indicate that ABA+ satisfies those properties, and in the
following subsections show that other (arguably) desirable
properties of preference handling are too satisfied by ABA+.

5.1 Conflict Preservation
The first property insists that extensions returned after ac-
counting for preferences should be conflict-free with respect
to attack relation not taking into account preferences. We
formulate it as a principle applicable to ABA+ as follows.
Definition 14. (L,R,A,̄ ¯̄,6) fulfils the Principle of Con-
flict Preservation for <-σ semantics if for all <-σ ex-
tensions E ⊆ A of (L,R,A,̄ ¯̄,6), for any α, β ∈ A,
{α} {β} implies that either α 6∈ E or β 6∈ E.

In (Čyras and Toni 2016) it was shown that Lemma 2
guarantees the following result.
Proposition 12. E ⊆ A is conflict-free in (L,R,A,̄ ¯̄) iff E
is <-conflict-free in (L,R,A,̄ ¯̄,6).

Consequently, ABA+ ensures conflict preservation:

Proposition 13. (L,R,A,̄ ¯̄,6) fulfils the Principle of Con-
flict Preservation for any semantics <-σ.

Proof. Let E be a <-σ extension of (L,R,A,̄ ¯̄,6), If
α, β ∈ E and {α} {β}, then {α, β} is not conflict-free,
and hence not<-conflict-free, by Proposition 12. But thenE
is not <-conflict-free either, which is a contradiction. Thus,
either one of α and β does not belong to E.

5.2 Empty Preferences
The second property insists that if there are no preferences,
then the extensions returned using a preference handling
mechanism should be the same as those obtained without
accounting for preferences. We formulate it as a principle
applicable to ABA+ as follows.

Definition 15. Suppose that the preference relation 6
in (L,R,A,̄ ¯̄,6) is the strict empty ordering ∅. Then
(L,R,A,̄ ¯̄, ∅) fulfils the Principle of Empty Preferences
for ∅-σ semantics if for all ∅-σ extensions E ⊆ A of
(L,R,A,̄ ¯̄, ∅), E is a σ extension of (L,R,A,̄ ¯̄).

In (Čyras and Toni 2016) the following result was shown
to hold.

Theorem 14. E ⊆ A is a σ-extension of (L,R,A,̄ ¯̄) iff E
is an ∅-σ extension of (L,R,A,̄ ¯̄, ∅).

This theorem, in addition to saying that ABA+ is a conser-
vative extension of ABA, immediately yields the satisfaction
of the principle in question:

Proposition 15. (L,R,A,̄ ¯̄, ∅) fulfils the Principle of
Empty Preferences for any semantics ∅-σ.

5.3 Maximal Elements
(Amgoud and Vesic 2014) proposed a property concerning
inclusion in extensions of the ‘strongest’ arguments, i.e. ar-
guments that are maximal w.r.t. preference ordering. We
next reformulate the property to be applicable to ABA+.

Definition 16. Suppose the preference ordering 6 of
(L,R,A,̄ ¯̄,6) is total and further assume that the set M =
{α ∈ A : @β ∈ A with α < β} is <-conflict-free.
(L,R,A,̄ ¯̄,6) fulfils the Principle of Maximal Elements
for <-σ semantics if for all <-σ extensions E ⊆ A of
(L,R,A,̄ ¯̄,6), it holds that M ⊆ E.

As an illustration, in Example 8, α is a unique 6-
maximal element inA, and {α} is a unique<-σ extension of
(L,R,A,̄ ¯̄,6), whence (L,R,A,̄ ¯̄,6) fulfils the Principle
of Maximal Elements for any semantics <-σ.

Our next result shows that in general, ABA+ satisfies this
principle under <-stable and <-complete semantics.

Proposition 16. (L,R,A,̄ ¯̄,6) fulfils the Principle of
Maximal Elements for <-stable and <-complete semantics.

Proof. Let the preference ordering 6 of (L,R,A,̄ ¯̄,6) be
total and suppose M = {α ∈ A : @β ∈ A with α < β} is
<-conflict-free. We first show that M is not <-attacked.

Fix α ∈M and suppose for a contradiction that for some
S ⊆ A it holds that S < {α}. So either (i) ∃B `R α with

29

B ⊆ S and ∀β ∈ B α 6 β or β
 α, or (ii) {α} `R β
for some β ∈ S with α < β. Note that the case (ii) cannot
happen, because α is6-maximal. So consider case (i). Since
6 is total, it follows that α 6 β ∀β ∈ B. But as α is 6-
maximal, it must also hold that β 6 α, for any β ∈ B. From
here, we show B ⊆ M . Indeed, fix β ∈ B and assume for
a contradiction that β 6∈ M . Then ∃γ ∈ A such that β < γ.
By transitivity, α < γ, contradicting α’s 6-maximality. So
we must have β ∈M , and consequently, B ⊆M .

But now, since α ∈ M, B ⊆ M and B < {α}, this
contradicts <-conflict-freeness of M . Therefore, by contra-
diction, S 6 < {α}, for any S ⊆ A. Since α ∈ M was
arbitrary, we have M <-unattacked, as required.

If (L,R,A,̄ ¯̄,6) admits no <-stable or <-complete ex-
tensions, then the principle is fulfilled trivially. Otherwise,
let E ⊆ A be <-stable in (L,R,A,̄ ¯̄,6). Pick α ∈ M and
suppose for a contradiction that α 6∈ E. Then E < {α},
which is a contradiction. Thus, α ∈ S, and hence M ⊆ S.

Now let E be a <-complete extension of (L,R,A,̄ ¯̄,6)
and suppose for a contradiction M * E. Then E does not
<-defend some α ∈M . This means that S < M for some
S ⊆ A, which is a contradiction. Hence, M ⊆ E.

This principle may, however, be violated under, say,
<-preferred semantics: in Example 12, the framework
(L,R,A,̄ ¯̄,6) to begin with, admits {α, β} as a <-
preferred extension, while γ 6∈ {α, β} is a 6-maximal el-
ement. However, assuming Contraposition, the Principle of
Maximal Elements is satisfied under the remaining seman-
tics too.

Corollary 17. If (L,R,A,̄ ¯̄,6) satisfies the Axiom of Con-
traposition, then it fulfils the Principle of Maximal Ele-
ments for <-preferred/<-ideal/<-grounded semantics.

Proof. Follows from Propositions 4, 7, 11 and 16.

5.4 Principle I
(Brewka and Eiter 2000) formulated a principle for sound
extension-based default reasoning with preferences, which
we reformulate for ABA+ next.

Definition 17. (L,R,A,̄ ¯̄,6) fulfils Principle I for <-σ
semantics if for all E,E′ ⊆ A such that E = E0 ∪ {α}
and E′ = E0 ∪ {α′} for some E0 ⊆ A, with α, α′ 6∈
E0 and α′ < α, it holds that if E is a <-σ exten-
sion of (L,R,A,̄ ¯̄,6), then E′ is not a <-σ extension of
(L,R,A,̄ ¯̄,6).

This principle insists that if two coherent viewpoints of a
situation differ only in that each of them contains a single as-
sumption not contained in the other, then the viewpoint with
the more preferred assumption should be chosen. ABA+ sat-
isfies this principle under <-stable semantics.

Proposition 18. (L,R,A,̄ ¯̄,6) fulfils Principle I for <-
stable semantics.

Proof. Suppose for a contradiction that both E = E0 ∪ {α}
and E′ = E0∪{α′}, where α′ < α, are<-stable extensions
of (L,R,A,̄ ¯̄,6). As E′ is <-stable and α 6∈ E′, we get
E′ < {α}. As E is <-conflict-free, we find E0 6 < {α},

so (from E′ < {α} we get that): (i) either there is E′′ ∪
{α′} `R α with E′′ ⊆ E0 and ε 6< α ∀ε ∈ E′′ ∪ {α′};
(ii) or {α} `R α′ is such that α < α′. As α′ < α, both
cases lead to a contradiction, so that E′ is not a <-stable
extension, provided E is.

In Example 8, E = {α} is a unique <-stable extension of
(L,R,A,̄ ¯̄,6), which illustrates the principle as follows:
take E0 = ∅ so that E = {α} and E′ = {β}, where β < α.
It is important that Principle I is satisfied under <-stable se-
mantics, because (Brewka and Eiter 1999) investigated (pre-
ferred) answer sets of logic programs, and answer sets in
Logic Programming correspond to stable extensions in ABA
(Bondarenko et al. 1997). Satisfaction of the principle gives
hope that preferred answer set semantics can be captured in
ABA+, as answer set semantics is captured in ABA.

Principle I, however, may be violated under <-preferred
semantics: in Example 12, (L,R,A,̄ ¯̄,6) has two <-
preferred extensions {α, β} and {β, γ}, and yet α < γ.
Note, though, that (L,R′,A,̄ ¯̄,6) satisfies the Axiom of
Contraposition and has a unique <-σ extension {β, γ}, and
thus fulfils Principle I for any semantics <-σ. Based on our
investigations, we conjecture that assuming Contraposition,
ABA+ frameworks fulfil the principle for the remaining se-
mantics as well. Verifying this is left as future work.

6 Non-Monotonic Reasoning Properties
(Čyras and Toni 2015) proposed and studied the well
known non-monotonic inference properties of Cautious
Monotonicity (MON henceforth) and Cumulative Transitiv-
ity (CUT henceforth) for ABA. Here, we investigate some
of those properties for ABA+. We first recall (some of) the
properties considered and results obtained.1

Assume as given a fixed, but otherwise arbitrary (flat)
ABA framework F = (L,R,A,̄ ¯̄). Let E be a σ exten-
sion of F . In what follows, E′ will denote a σ extension of a
newly constructed ABA framework F ′. To avoid trivialities,
we consider cases only where each of F and F ′ has at least
one σ extension—E and E′ respectively.

We first recall the STRICT setting regarding strengthen-
ing of information. Given ψ ∈ Cn(E) \ A, define F ′ =
(L,R∪ {ψ ← >},A,̄ ¯̄). There are four properties:

SCEPTICAL STRICT CUT :

For all extensions E′ of F ′ we have Cn(E′) ⊆ Cn(E);

CREDULOUS STRICT CUT :

There is an extension E′ of F ′ with Cn(E′) ⊆ Cn(E);

SCEPTICAL STRICT MON :

For all extensions E′ of F ′ we have Cn(E) ⊆ Cn(E′);

CREDULOUS STRICT MON :

There is an extension E′ of F ′ with Cn(E) ⊆ Cn(E′).

Table 1 summarizes results pertaining to ABA (sceptical
and credulous versions coincide under grounded and ideal

1In (Čyras and Toni 2015), instead of sceptical/credulous (see
below) the words strong/weak were used, respectively; we have
altered the names to adhere to the more common terminology.

30 properties of aba+ for non-monotonic reasoning

semantics, and for other semantics the status of the credu-
lous property is indicated in parentheses).

Property Grd. Ideal Stable Pref. Cpl.
STRICT
CUT X X X (X) X (X) X (X)

STRICT
MON X X X (X) X (X) X (X)

Table 1: STRICT CUT /MON for standard ABA

We now recall the ASM setting, where conclusions that
are themselves assumptions are being confirmed. Given ψ ∈
Cn(E) ∩ A, define F ′ = (L,R ∪ {ψ ← >},A \ {ψ},̄ ¯̄).2
The properties are as follows:

SCEPTICAL ASM CUT :

For all extensions E′ of F ′ we have Cn(E′) ⊆ Cn(E);

CREDULOUS ASM CUT :

There is an extension E′ of F ′ with Cn(E′) ⊆ Cn(E);

SCEPTICAL ASM MON :

For all extensions E′ of F ′ we have Cn(E) ⊆ Cn(E′);

CREDULOUS ASM MON :

There is an extension E′ of F ′ with Cn(E) ⊆ Cn(E′).

Table 2 summarizes results regarding ABA in the ASM
setting (notation as before).

Property Grd. Ideal Stable Pref. Cpl.
ASM CUT X X X (X) X (X) X (X)
ASM MON X X X (X) X (X) X (X)

Table 2: ASM CUT /MON for standard ABA

The non-monotonic inference properties CUT and
MON can be readily applied to ABA+. Take F to be an
ABA+ framework (L,R,A,̄ ¯̄,6), let E be its <-σ exten-
sion, and given ψ ∈ Cn(E), define F ′ as follows:
• STRICT setting: F ′ = (L,R∪ {ψ ← >},A,̄ ¯̄,6);
• ASM setting: F ′ = (L,R ∪ {ψ ← >},A \ {ψ},̄ ¯̄,6′),

where 6′ is a restriction of 6 to A \ {ψ}.
We can then analyse whether the non-monotonic infer-

ence properties in question are satisfied in ABA+. Trivially,
as ABA+ is a conservative extension of ABA (cf. Theo-
rem 14), properties violated in ABA will remain violated
in ABA+. Therefore, we will focus on those that are satis-
fied in ABA; in particular, the credulous versions except for
MON under ideal semantics.

Example 18. As an illustration of the properties, recall Ex-
ample 12. The ABA+ frameworkF = (L,R′,A,̄ ¯̄,6) (that
satisfies the Axiom of Contraposition) has a unique <-σ ex-
tension {β, γ} with Cn({β, γ}) = {α, β, γ}.

2For brevity reasons, the same symbol ¯̄̄ is used for both con-
trary mappings, and in the new framework F ′, the contrary map-
ping¯̄̄ is implicitly restricted to a diminished set of assumptions.

• STRICT setting: take α and let F ′ = (L,R ∪ {α ←
>},A,̄ ¯̄,6). ThenF ′ has a unique<-σ extension {β, γ}.

• ASM setting: take β and let F ′ = (L,R ∪ {β ← >},A \
{β},̄ ¯̄,6′) with α <′ γ. Then F ′ likewise has a unique
<-σ extension {β, γ}.

As conclusions of extensions of both F and F ′ are actually
the same, the credulous versions of the properties are indeed
satisfied in both settings.

In what follows, we assume that (L,R,A,̄ ¯̄,6) satisfies
the Axiom of Contraposition and show that ABA+ retains
the same satisfaction results of CUT and MON from ABA in
both STRICT and ASM settings.

Proposition 19. <-complete semantics satisfies
CREDULOUS STRICT CUT and CREDULOUS STRICT
MON.

Proof. Let E be a <-complete extension of F =
(L,R,A,̄ ¯̄,6), fix ψ ∈ Cn(E) \ A, and let F ′ = (L,R ∪
{ψ ← >},A,̄ ¯̄,6). For ease of reference, we will denote
by < and ′< the <-attack relations in F and F ′ respec-
tively. We claim that E is a <-complete extension of F ′ too.
First, E is clearly <-conflict-free in F ′. Second, let α ∈ E
and suppose thatB′ ′< {α} for someB′ ⊆ AwithB′\E.
There are two possibilities.

Possibility 1: this <-attack uses the rule ψ ← >. We split
into cases.
• First, assume B′ ′< {α} via normal attack. I.e., ∃B `R
α with B ⊆ B′, R ⊆ R, and such that ∀β ∈ B β 6< α.
Consider some E0 ⊆ E with E0 `R0 ψ, for some R0 ⊆
R. We have B ∪ E0 `R∪R0 α.
– If ∀ε ∈ E0 we have ε 6< α, then B ∪ E0 < {α}, so

that E < B ∪ E0, and thus (as E is <-admissible in
F and E0 ⊆ E) we find E < B, whence E ′< B
as well. Thus, E < B′, as required.

– Else, if ∃ε ∈ E0 with ε < α, take 6-minimal such.
Then by the Axiom of Contraposition, there is (B∪E0\
{ε}) ∪ {α} `R′

ε, and by 6-minimality of ε, we find
that @x ∈ (B∪E0\{ε})∪{α} such that x < ε. Hence,
(B ∪E0 \ {ε}) ∪ {α} < {ε}, so that E < B ∪E,
and hence E ′< B, as in the previous case.

• Now assume B′ ′< {α} is a reverse attack, i.e., {α} `R
β, β ∈ B′, R ⊆ R and α < β. By the Axiom of Con-
traposition, {β} `R′

α via normal attack. Hence, we are
back in the first case above.

In any case, E <-defends α in F ′.
Possibility 2: the <-attack B′ ′< {α} does not involve

the rule ψ ← >. That is, we actually have B′ < {α}.
Then, E < B′, and hence E ′< B′.

In any event, E <-defends α in F ′. Since α ∈ E was
arbitrary, we conclude that E is <-admissible in F ′.

It now suffices to show that E contains every assumption
it <-defends in F ′. To this end, suppose E <-defends α in
F ′, and suppose for a contradiction that α 6∈ E. Then E
does not <-defend α in F . That is, there is B < {α}
such that E 6 < B. But now, we also have B ′< {α},
so that E ′< B, whence it must be that E ′< B is a
normal attack that does not use some assumption ε ∈ E
(which is used to deduce ψ, i.e. E0 `R0 ψ, ε ∈ E0 ⊆ E,

31

R0 ⊆ R) such that ε < β for some β ∈ B. Taking 6-
minimal such ε (and accordingly some βinB), the Axiom of
Contraposition guarantees that (E \{ε})∪{β} < {ε} via
normal attack, and since ε ∈ E, it must be that E < {β},
giving E < B, which is a contradiction. Hence, α ∈ E
after all, and so E is <-complete in F ′, as required.

Proposition 20. <-preferred semantics satisfies
CREDULOUS STRICT CUT and CREDULOUS STRICT
MON.

Proof. Like in the proof of Proposition 19, we claim that a
<-preferred extension E of F is a <-preferred extension of
F ′. Indeed, if E were not⊆-maximally <-admissible in F ′,
then for some β ∈ A \ E, E ∪ {β} would be <-admissible
in F ′. Verbatim to the proof for <-complete semantics, we
could show that E ∪ {β} is <-admissible in F too, contra-
dicting E being <-preferred in F .

Proposition 21. <-stable semantics satisfies CREDULOUS
STRICT CUT and CREDULOUS STRICT MON.

Proof. Like in the proof of Proposition 19, we claim that a
<-stable extension E of F is a <-stable extension of F ′.
Indeed, let β 6∈ E. Then E < {β}. Whether it is a normal
or reverse attack, we clearly have E ′< {β} too. Hence, E
is <-stable in F ′, provided E is <-stable in F .

Proposition 22. <-grounded semantics satisfies
CREDULOUS STRICT CUT and CREDULOUS STRICT
MON.

Sketch. Using the argument as in Proposition 19, it can be
proven by induction on the construction of the <-grounded
extension G of F (cf. Proposition 4) that G is the <-
grounded extension of F ′.
Corollary 23. <-ideal semantics satisfies CREDULOUS
STRICT CUT.

Proof. This follows by definition of the <-ideal extension
and Proposition 20.

Now, in the ASM setting, the came results can be obtained
as in the STRICT setting, with essentially the same proofs.
Proposition 24. <-complete/<-preferred/<-stable/<-
grounded semantics satisfies CREDULOUS ASM CUT and
CREDULOUS ASM MON, and <-ideal semantics satisfies
CREDULOUS ASM CUT.

Sketch. Let E be a <-complete extension of F =
(L,R,A,̄ ¯̄,6), fix ψ ∈ Cn(E) ∩ A, and let F ′ = (L,R ∪
{ψ ← >},A \ {ψ},̄ ¯̄,6′), where 6′ is a restriction of 6
to A \ {ψ}. It can be shown that E is a <-complete exten-
sion of F ′, by replacing, in the proof of Proposition 19, E0

and E0 `R0 ψ with {ψ} and {ψ} `∅ ψ respectively. Other
claims follow the same line of reasoning as for the proofs in
the STRICT setting.

Table 3 summarizes this section’s results (sceptical and
credulous versions coincide under <-grounded and <-ideal
semantics; for other semantics the credulous version is indi-
cated in parentheses.)

Property <-g. <-id. <-stb. <-pr. <-cpl.
STRICT and
ASM CUT X X X (X) X (X) X (X)

STRICT and
ASM MON X X X (X) X (X) X (X)

Table 3: (STRICT and ASM) CUT and MON for ABA+

7 Related and Future Work
The principle of Contraposition of (strict) rules (see
e.g. (Caminada and Amgoud 2007; Modgil and Prakken
2013)) is notably employed in the well studied structured
argumentation formalism ASPIC+ (Modgil and Prakken
2013; 2014). The principle as such is also inherently present
in classical logic-based approaches to structured argumen-
tation such as (Gorogiannis and Hunter 2011; Besnard and
Hunter 2014). Similarly as in ASPIC+, ABA+ utilizes Con-
traposition to ensure the Fundamental Lemma (cf. Lemma
3). As a consequence, Contraposition paves way to satis-
faction of desirable properties of ABA+ semantics, as well
as preference handling and non-monotonic inference prop-
erties discussed in Sections 5 and 6. Whether the Axiom of
Contraposition can be relaxed for ABA+ to obtain the same
results is a line of future research.

The preference handling principle discussed in Section
5.4 was originally proposed, along with some other prop-
erties, by (Brewka and Eiter 1999) for answer set program-
ming (ASP) with preferences. To the best of our knowledge,
reformulation of Principle I for ABA+ is the first application
of this principle to argumentation with preferences. Building
on (Brewka and Eiter 1999), (Šimko 2014) discussed an ex-
tended set of principles for ASP with preferences, most of
which focus on preferences over rules. Whether those prin-
ciples can be applied to ABA+ is a future work direction.

Regarding preference handling in argumentation, along
with the Principle of Maximal Elements discussed in Sec-
tion 5.3, (Amgoud and Vesic 2014) suggested several ar-
guably desirable properties of argumentation with prefer-
ences. Those properties are exhibited in ABA+ as Propo-
sition 12 and Theorem 14. Referring to those properties,
(Brewka, Truszczyński, and Woltran 2010) also hinted at
other properties regarding selection among extensions, as
possible principles of preference handling in argumentation.
Relating those principles to ABA+ is left for future work.

In terms on non-monotonic reasoning properties, Cau-
tious Monotonicity and Cumulative Transitivity (studied in
Section 6) are traced to (Makinson 1988; Kraus, Lehmann,
and Magidor 1990) and fall into the well studied area of
analysing non-monotonic reasoning with respect to infor-
mation change (cf. (Rott 2001)). In argumentation setting,
the latter is also known as argumentation dynamics, and
has recently been a topic of interest in the argumentation
community (see e.g. (Cayrol, de Saint-Cyr, and Lagasquie-
Schiex 2010; Falappa et al. 2011; Baroni et al. 2014; Coste-
Marquis et al. 2014; Booth et al. 2014; Diller et al. 2015;
Baumann and Brewka 2015)). In particular, non-monotonic
inference properties were investigated in (Hunter 2010) with

32 properties of aba+ for non-monotonic reasoning

respect to argument–claim entailment in logic-based argu-
mentation systems; in (Čyras and Toni 2015) for ABA; and
with regards to ASPIC+-type-of argumentation systems in
(Dung 2016). Only the latter of the three works concerns
argumentation with preferences. In addition to considering
different structured argumentation setting and different pref-
erence handling mechanisms, it diverges from our analysis
in Section 6 in that (Dung 2016) regards Cumulative Tran-
sitivity plus Cautious Monotonicity as a single property of
Cumulativity and studies it only for stable and complete se-
mantics. Other argumentation-related properties from (Dung
2016) will be studied for ABA+ in the future.

Several other topics of interest are left for future work. For
instance, integrating dynamic preferences (see e.g. (Prakken
and Sartor 1999; Zhang and Foo 1997; Brewka and Woltran
2010)) within ABA+ and studying their interaction with
the properties of preference handling as well as of non-
monotonic inference. Also, relation of ABA+ to Logic Pro-
gramming with preferences (e.g. (Sakama and Inoue 1996;
Zhang and Foo 1997; Brewka and Eiter 1999)) and non-
monotonic reasoning formalisms equipped with preferences
in general (e.g. (Brewka 1989; Baader and Hollunder 1995;
Rintanen 1998; Brewka and Eiter 2000; Delgrande and
Schaub 2000; Stolzenburg et al. 2003; Kakas and Moraitis
2003)) is left for future research.

There are as well numerous approaches to integrating rea-
soning with preferences within argumentation, e.g. (Am-
goud and Cayrol 2002; Bench-Capon 2003; Kaci and
van der Torre 2008; Modgil 2009; Modgil and Prakken
2010; Baroni et al. 2011; Dunne et al. 2011; Brewka et al.
2013; Amgoud and Vesic 2014; Besnard and Hunter 2014;
Garcı́a and Simari 2014; Wakaki 2014; Modgil and Prakken
2013; 2014; Dung 2016). It would be interesting to study
these formalisms with respect to the properties considered
in this paper, where it has not already been done. We leave
this as future work.

8 Conclusions
We investigated various properties of a recently proposed
non-monotonic reasoning formalism ABA+ (Čyras and Toni
2016) that deals with preferences in structured argumen-
tation. In particular, we first established that assuming the
principle of Contraposition (see e.g. (Modgil and Prakken
2013)), ABA+ semantics exhibit desirable properties akin
to those of other existing argumentation formalisms, such as
(Dung 1995). We then showed that ABA+ satisfies some (ar-
guably) desirable principles of preference handling in argu-
mentation and non-monotonic reasoning, e.g. (Brewka and
Eiter 1999). Finally, we analysed non-monotonic inference
properties (as in (Čyras and Toni 2015)) of ABA+ under
various semantics. We believe our work contributes to the
understanding of preferences within argumentation in par-
ticular, and in non-monotonic reasoning at large.

References
Amgoud, L., and Cayrol, C. 2002. A Reasoning Model
Based on the Production of Acceptable Arguments. Ann.
Math. Artif. Intell. 34(1-3):197–215.

Amgoud, L., and Vesic, S. 2009. Repairing Preference-
Based Argumentation Frameworks. In IJCAI, 665–670.
Amgoud, L., and Vesic, S. 2014. Rich Preference-
Based Argumentation Frameworks. Int. J. Approx. Reason.
55(2):585–606.
Baader, F., and Hollunder, B. 1995. Priorities on Defaults
with Prerequisites, and Their Application in Treating Speci-
ficity in Terminological Default Logic. J. Autom. Reason.
15(1):41–68.
Baroni, P.; Cerutti, F.; Giacomin, M.; and Guida, G. 2011.
AFRA: Argumentation Framework with Recursive Attacks.
Int. J. Approx. Reason. 52(1):19–37.
Baroni, P.; Boella, G.; Cerutti, F.; Giacomin, M.; van der
Torre, L.; and Villata, S. 2014. On the Input/Output Behav-
ior of Argumentation Frameworks. Artif. Intell. 217:144–
197.
Baumann, R., and Brewka, G. 2015. AGM Meets Abstract
Argumentation: Expansion and Revision for Dung Frame-
works. In IJCAI, 2734–2740.
Bench-Capon, T. 2003. Persuasion in Practical Argument
Using Value Based Argumentation Frameworks. J. Log.
Comput. 13(3):429–448.
Besnard, P., and Hunter, A. 2014. Constructing Argu-
ment Graphs with Deductive Arguments: A Tutorial. Ar-
gum.&Comput. 5(1):5–30.
Besnard, P.; Garcı́a, A. J.; Hunter, A.; Modgil, S.; Prakken,
H.; Simari, G. R.; and Toni, F. 2014. Introduction to Struc-
tured Argumentation. Argum.&Comput. 5(1):1–4.
Bondarenko, A.; Dung, P. M.; Kowalski, R.; and Toni, F.
1997. An Abstract, Argumentation-Theoretic Approach to
Default Reasoning. Artif. Intell. 93(97):63–101.
Booth, R.; Gabbay, D.; Kaci, S.; Rienstra, T.; and van der
Torre, L. 2014. Abduction and Dialogical Proof in Argu-
mentation and Logic Programming. In ECAI.
Brewka, G., and Eiter, T. 1999. Preferred Answer Sets for
Extended Logic Programs. Artif. Intell. 109(1-2):297–356.
Brewka, G., and Eiter, T. 2000. Prioritizing Default Logic.
In Intellectics Comput. Log., 27–45.
Brewka, G., and Woltran, S. 2010. Abstract Dialectical
Frameworks. In KR.
Brewka, G.; Ellmauthaler, S.; Strass, H.; Wallner, J.; and
Woltran, S. 2013. Abstract Dialectical Frameworks Revis-
ited. In IJCAI, 803–809.
Brewka, G.; Niemelä, I.; and Truszczyński, M. 2007. Non-
monotonic reasoning. In van Harmelen, F.; Lifschitz, V.; and
Bruce, P., eds., Handb. Knowl. Represent. Elsevier. 239–
284.
Brewka, G.; Truszczyński, M.; and Niemelä, I. 2008. Prefer-
ences and Nonmonotonic Reasoning. AI Mag. 29(4):69–78.
Brewka, G.; Truszczyński, M.; and Woltran, S. 2010. Rep-
resenting Preferences Among Sets. In AAAI, 273–278.
Brewka, G. 1989. Preferred Subtheories: An Extended Log-
ical Framework for Default Reasoning. In IJCAI, 1043–
1048.

33

Caminada, M., and Amgoud, L. 2007. On the Evaluation of
Argumentation Formalisms. Artif. Intell. 171(5-6):286–310.
Cayrol, C.; de Saint-Cyr, F.; and Lagasquie-Schiex, M.-
C. 2010. Change in Abstract Argumentation Frameworks:
Adding an Argument. J. Artif. Intell. Res. 38(1):49–84.
Coste-Marquis, S.; Konieczny, S.; Mailly, J.-G.; and Mar-
quis, P. 2014. On the Revision of Argumentation Systems:
Minimal Change of Arguments Status. In KR.

Čyras, K., and Toni, F. 2015. Non-Monotonic Inference
Properties for Assumption-Based Argumentation. In TAFA,
92–111.
Čyras, K., and Toni, F. 2016. ABA+: Assumption-Based
Argumentation with Preferences. In KR.
Delgrande, J., and Schaub, T. 2000. Expressing Preferences
in Default Logic. Artif. Intell. 123(1-2):41–87.
Delgrande, J.; Schaub, T.; Tompits, H.; and Wang, K. 2004.
A Classification and Survey of Preference Handling Ap-
proaches in Nonmonotonic Reasoning. Comput. Intell.
20(2):308–334.
Diller, M.; Haret, A.; Linsbichler, T.; Rummele, S.; and
Woltran, S. 2015. An Extension-Based Approach to Belief
Revision in Abstract Argumentation. In IJCAI, 2926–2932.
Domshlak, C.; Hüllermeier, E.; Kaci, S.; and Prade, H.
2011. Preferences in AI: An Overview. Artif. Intell. 175(7-
8):1037–1052.
Dung, P. M. 1995. On the Acceptability of Arguments and
its Fundamental Role in Nonmonotonic Reasoning, Logic
Programming and n-person Games. Artif. Intell. 77:321–
357.
Dung, P. M. 2016. An axiomatic Analysis of Structured
Argumentation with Priorities. Artif. Intell. 231:107–150.
Dunne, P.; Hunter, A.; McBurney, P.; Parsons, S.; and
Wooldridge, M. 2011. Weighted Argument Systems: Ba-
sic Definitions, Algorithms, and Complexity Results. Artif.
Intell. 175(2):457–486.
Falappa, M.; Garcı́a, A. J.; Kern-Isberner, G.; and Simari,
G. R. 2011. On the Evolving Relation between Belief Revi-
sion and Argumentation. Knowl. Eng. Rev. 26(01):35–43.
Garcı́a, A. J., and Simari, G. R. 2014. Defeasible Logic
Programming: DeLP-servers, Contextual Queries, and Ex-
planations for Answers. Argum.&Comput. 5(1):63–88.
Gorogiannis, N., and Hunter, A. 2011. Instantiating Abstract
Argumentation with Classical Logic Arguments: Postulates
and Properties. Artif. Intell. 175(9-10):1479–1497.
Hunter, A. 2010. Base Logics in Argumentation. In
COMMA, 275–286.
Kaci, S., and van der Torre, L. 2008. Preference-Based
Argumentation: Arguments Supporting Multiple Values. Int.
J. Approx. Reason. 48(3):730–751.
Kaci, S. 2011. Working with Preferences. Less is More.
Springer.
Kakas, A., and Moraitis, P. 2003. Argumentation Based
Decision Making for Autonomous Agents. In AAMAS, 883–
890.

Kraus, S.; Lehmann, D.; and Magidor, M. 1990. Nonmono-
tonic Reasoning, Preferential Models and Cumulative Log-
ics. Artif. Intell. 44(1-2):167–207.
Makinson, D. 1988. General Theory of Cumulative Infer-
ence. In NMR, 1–18.
Modgil, S., and Prakken, H. 2010. Reasoning About Prefer-
ences in Structured Extended Argumentation Frameworks.
In COMMA, 347–358.
Modgil, S., and Prakken, H. 2013. A General Account of
Argumentation with Preferences. Artif. Intell. 195:361–397.
Modgil, S., and Prakken, H. 2014. The ASPIC+ Framework
for Structured Argumentation: A Tutorial. Argum.&Comput.
5(1):31–62.
Modgil, S. 2009. Reasoning About Preferences in Argu-
mentation Frameworks. Artif. Intell. 173(9-10):901–934.
Prakken, H., and Sartor, G. 1999. A System for Defeasible
Argumentation, with Defeasible Priorities. In Wooldridge,
M., and Veloso, M., eds., Artif. Intell. Today, volume 1600
of Lecture Notes in Computer Science. Springer. 365–379.
Rahwan, I., and Simari, G. R. 2009. Argumentation in Arti-
ficial Intelligence. Springer.
Rintanen, J. 1998. Complexity of Prioritized Default Logics.
J. Artif. Intell. Res. 9:423–461.
Rott, H. 2001. Change, Choice and Inference: A Study of
Belief Revision and Nonmonotonic Reasoning. Oxford Uni-
versity Press.
Sakama, C., and Inoue, K. 1996. Representing Priorities in
Logic Programs. In JICSLP, 82–96.
Simari, G. R., and Loui, R. 1992. A Mathematical Treat-
ment of Defeasible Reasoning and Its Implementation. Artif.
Intell. 53(2-3):125–157.
Šimko, A. 2014. Logic Programming With Preferences
On Rules. Ph.D. Dissertation, Comenius University in
Bratislava.
Stolzenburg, F.; Garcı́a, A. J.; Chesñevar, C.; and Simari,
G. R. 2003. Computing Generalized Specificity. J. Appl.
Non-Classical Logics 13:87–113.
Toni, F. 2014. A Tutorial on Assumption-Based Argumen-
tation. Argum.&Comput. 5(1):89–117.
Wakaki, T. 2014. Assumption-Based Argumentation
Equipped with Preferences. In PRIMA, 116–132.
Zhang, Y., and Foo, N. Y. 1997. Answer Sets for Prioritized
Logic Programs. In ILPS, 69–83.

34 properties of aba+ for non-monotonic reasoning

Equational properties of stratified least fixed points

Zoltan Esik
Dept. of Computer Science

University of Szeged
Hungary

Article published in: Proc. Logic, Language, Information, and Computation - 22nd International Workshop, WoLLIC 2015,
Bloomington, IN, USA, July 20-23, LNCS 9160, Valeria de Paiva, Ruy J. G. B. de Queiroz, Lawrence S. Moss, Daniel Leivant
and Anjolina Grisi de Oliveira, Eds., pp. 174188, Springer, 2015. http://arxiv.org/abs/1410.8111. Full version is
under consideration for publication in a journal.

35

Studies on Brutal Contraction and Severe Withdrawal: Preliminary Report

Marco Garapa
Universidade da Madeira

CIMA - Centro de Investigação
em Matemática e Aplicações∗

marco@uma.pt

Eduardo Fermé
Universidade da Madeira

NOVA Laboratory for Computer Science
and Informatics (NOVA LINCS)†

ferme@uma.pt

Maurı́cio D. L. Reis
Universidade da Madeira

CIMA - Centro de Investigação
em Matemática e Aplicações∗

m reis@uma.pt

Abstract

In this paper we study the class of brutal base contractions
that are based on a bounded ensconcement and also the class
of severe withdrawals which are based on bounded epistemic
entrenchment relations that are defined by means of bounded
ensconcements (using the procedure proposed by Mary-Anne
Williams). We present axiomatic characterizations for each
one of those classes of functions and investigate the interrela-
tion among them.

1 Introduction
The central goal underlying the research area of logic of the-
ory change is the study of the changes which can occur in
the belief state of a rational agent when he receives new in-
formation.

The most well known model of theory change was pro-
posed by Alchourrón, Gärdenfors, and Makinson (1985) and
is, nowadays, known as the AGM model. Assuming that
the belief state of an agent is modelled by a belief set (i.e.
a logically closed set of sentences), this framework essen-
tially provides a definition for contractions — i.e. functions
that receive a sentence (representing the new information re-
ceived by the agent), and return a belief set which is a sub-
set of the original one that does not contain the received
sentence. In the mentioned paper, the class of partial meet
contractions was introduced and axiomatically character-
ized. Subsequently several constructive models have been
presented for the class of contraction functions proposed in
the AGM framework (such as the system of spheres-based
contractions (Grove 1988), safe/kernel contractions (Al-
chourrón and Makinson 1985; Hansson 1994), and the epis-
temic entrenchment-based contractions (Gärdenfors 1988;
Gärdenfors and Makinson 1988)). Also several adaptations
and variations of those constructive models have been pre-
sented and studied in the literature as it is the case, for
example, of severe withdrawals (or mild contractions or
Rott’s contractions) (Rott 1991; Rott and Pagnucco 1999)
which results of simplifying the definition of epistemic
entrenchment-based contractions.
∗Supported by FCT - Fundação para a Ciência e a Tecnologia

through project UID/MAT/04674/2013 (CIMA).
†Supported by FCT MCTES and NOVA LINCS

UID/CEC/04516/2013.

Although the AGM model has quickly acquired the status
of standard model of theory change, several researchers (for
an overview see (Fermé and Hansson 2011)) have pointed
out its inadequateness in several contexts and proposed sev-
eral extensions and generalizations to that framework. One
of the most relevant of the proposed extensions of the AGM
model of contraction is to use sets of sentences not (neces-
sarily) closed under logical consequence — which are des-
ignated belief bases — rather than belief sets to represent
belief states.

Hence, several of the existing models (of AGM contrac-
tions) were generalized to the case when belief states are
represented by belief bases instead of belief sets. Among
those we emphasize the ensconcement-based contractions
and the brutal base contractions (of belief bases) proposed
in (Williams 1995), which can be seen as adaptations to
the case of belief bases of the epistemic entrenchment-based
contractions and of the severe withdrawals, respectively. In
fact, the definitions of those operations are both based on the
concept of ensconcement, which is an adaptation of the con-
cept of epistemic entrenchment relation to the case of belief
bases. In the mentioned paper Mary-Anne Williams has also
presented a method for constructing an epistemic entrench-
ment from an ensconcement relation.

In the present paper we will study the interrelation among
brutal base contractions (of belief bases) and severe with-
drawals (of belief sets). More precisely, we will devote
special attention to the class of brutal base contractions
which are based on bounded ensconcements — the so-
called bounded brutal base contractions — and also to
the class of the so-called ensconcement-based severe with-
drawals, which is formed by the severe withdrawals that
are based on an epistemic entrenchment relation defined
from a bounded ensconcement using Mary-Anne William’s
method. We shall provide axiomatic characterizations to
each one of those classes of functions and study the inter-
relation among them.

This paper is organized as follows: Firstly we provide
the notation and background needed for the rest of the pa-
per. After that we provide axiomatic characterizations for
the classes of bounded brutal base contractions and of
ensconcement-based severe withdrawals. Furthermore we
show how to define a bounded brutal base contraction from
an ensconcement-based severe withdrawal and vice-versa.

37

Finally, we briefly summarize the main contributions of
the paper. In the appendix we provide proofs for the the-
orems. Proofs for all the remaining results are available at
http://www.cee.uma.pt/ferme/GFR16-full.pdf.

2 Background
2.1 Formal preliminaries
We will assume a language L that is closed under truth-
functional operations and a consequence operator Cn for
L. Cn satisfies the standard Tarskian properties, namely
inclusion (A ⊆ Cn(A)), monotony (if A ⊆ B, then
Cn(A) ⊆ Cn(B)), and iteration (Cn(A) = Cn(Cn(A))).
It is supraclassical and compact, and satisfies deduction (if
β ∈ Cn(A ∪ {α}), then (α → β) ∈ Cn(A)). A ` α will
be used as an alternative notation for α ∈ Cn(A), ` α for
α ∈ Cn(∅) and Cn(α) for Cn({α}). Upper-case letters de-
note subsets of L. Lower-case Greek letters denote elements
of L.
A well-ranked preorder on a set X is a preorder such that
every nonempty subset of X has a minimal member, and
similarly an inversely well-ranked preorder on a set X is a
preorder such that every nonempty subset of X has a maxi-
mal member. A total preorder on X is bounded if and only
if it is both well-ranked and inversely well-ranked.1

2.2 AGM
The AGM model of belief change was proposed by Al-
chourrón, Gärdenfors, and Makinson (1985) and acquired
the status of standard model of belief change. In this model
beliefs are represented by a set of sentences closed under
logical consequence. In the AGM framework there are three
operations to be considered, namely expansion, contraction
and revision. Expansion, consists of adding new informa-
tion (represented by sentences) in the original set preserv-
ing logical closure. Contraction, consists of eliminating sen-
tences from a belief set, in such a way that the remaining
set does not imply a specified sentence. Revision, consists
in incorporating a sentence in the original set, but (eventu-
ally) eliminating some sentences in order to retain consis-
tency of the revised set. AGM has been characterized in, at
least five, different ways: Postulates, partial meet functions,
epistemic entrenchment,safe/kernel contraction and Grove’
sphere-systems (for an overview see (Fermé and Hansson
2011)).
One of the Postulates included in the axiomatic characteri-
zation of the contraction operator is recovery:

(Recovery) K ⊆ (K − α) + α

Recovery is based in the principle that “it is reasonable
to require that we get all of the beliefs [...] back again after
first contracting and then expanding with respect to the same
belief” (Gärdenfors 1982). Nevertheless, the recovery postu-
late have been criticized by several authors (Fuhrmann 1991;

1In (Williams 1994a) a preorder in these conditions is desig-
nated by finite, however we think it is more adequate to use the
denomination bounded.

Hansson 1991; Levi 1991; Niederée 1991) as a general prin-
ciple that contractions should hold. Alternative contraction
models were proposed in which the recovery postulate does
not hold, for instance: Levi Contraction (Levi 1991), Severe
Withdrawal (Rott 1991; Rott and Pagnucco 1999) and Semi-
contraction (Fermé 1998).

2.3 Epistemic Entrenchment
Epistemic entrenchment was introduced in (Gärdenfors
1988; Gärdenfors and Makinson 1988) and relies on the
idea that contractions on a belief set K should be based on
an ordering of its sentences according to their epistemic
entrenchment. When a belief set K is contracted it is
prefered to give up beliefs with lower entrechment over
others with a higher entrechment. Gärdenfors proposed the
following set of axioms that an epistemic entrechment order
≤ related to a belief set K should satisfy:

(EE1) If α ≤ β and β ≤ γ, then α ≤ γ (Transitivity)
(EE2) If α ` β, then α ≤ β (Dominance)
(EE3) α ≤ (α ∧ β) or β ≤ (α ∧ β) (Conjunctiveness)
(EE4) If K 6`⊥, then α 6∈ K if and only if α ≤ β for all β
(Minimality)
(EE5) If β ≤ α for all β, then ` α (Maximality)

If ≤ is well-ranked and inversely well-ranked, then the
epistemic entrenchment is well-ranked and inversely well-
ranked, and therefore is a bounded epistemic entrenchment.
The relation ≤ of epistemic entrenchment is independent
of the change functions in the sense that it does not refer to
any contraction or revision function. In addition to stating
the axioms of entrenchment, Gärdenfors proposed the
following entrenchment-based contraction functions:

(G≤) β ∈ K−α if and only if β ∈ K and, either ` α or
α < (α ∨ β)

The crucial clause of (G≤) is α < (α ∨ β). This clause
can be justified with reference to the recovery postulate
(Gärdenfors and Makinson 1988).

Severe withdrawal: Rott (1991) proposed a more intu-
itive alternative definition, later called Severe withdrawal (or
mild contraction or Rott’s contraction) (Rott and Pagnucco
1999):

(R≤) β ∈ K−α if and only if β ∈ K and, either ` α or
α < β

Arló-Costa and Levi (2006) have analyzed it in terms
of minimal loss of informational value. It has been shown
to satisfy the implausible postulate of expulsiveness. (If
6` α and 6` β, then either α 6∈ K ÷ β or β 6∈ K ÷ α)
(Hansson 1999b). Lindström and Rabinowicz (1991) ab-
stained from recommending either a particularly expulsive
contraction (severe withdrawal) or a particularly retentive
one (AGM contraction). They argued that these extremes
should be taken as “upper” and “lower” bounds and that
any “reasonable” contraction function should be situated

38 studies on brutal contraction and severe withdrawal : preliminary report

between them. This condition was called the Lindström’s
and Rabinowicz’s interpolation thesis (Rott 1995). Severe
withdrawal was axiomatized independently by Rott and
Pagnucco (1999) and by Fermé and Rodriguez (1998). The
following set of postulates characterize severe withdrawals
(Rott and Pagnucco 1999):

(÷1) K ÷ α = Cn(K ÷ α)
(÷2) K ÷ α ⊆ K
(÷3) If α 6∈ K or ` α, then K ⊆ K ÷ α
(÷4) If 6` α, then α 6∈ K ÷ α
(÷6) If Cn(α) = Cn(β), then K ÷ α = K ÷ β
(÷7a) If 6` α, then K ÷ α ⊆ K ÷ (α ∧ β)
(÷8) If α 6∈ K ÷ (α ∧ β), then K ÷ (α ∧ β) ⊆ K ÷ α

Severe withdrawal also satisfies the following postulates:

(÷10) If 6` α and α ∈ K ÷ β, then K ÷ α ⊆ K ÷ β.
(Linearity) Either K ÷ α ⊆ K ÷ β or K ÷ β ⊆ K ÷ α.
(Expulsiveness) If 6` α and 6` β, then either α 6∈ K ÷ β or
β 6∈ K ÷ α.

Rott and Pagnucco (1999) showed that an alternative
axiomatization of severe withdrawals consists of the postu-
lates (÷1) to (÷4) and (÷6) and:

(÷9) If α 6∈ K ÷ β, then K ÷ β ⊆ K ÷ α.

2.4 Ensconcement
Williams (1992; 1995) defines an ensconcement relation on
a belief base A as a transitive and connected relation � that
satisfies the following three conditions:2

(�1) If β ∈ A \ Cn(∅), then {α ∈ A : β ≺ α} 6` β
(�2) If 6` α and ` β, then α ≺ β, for all α, β ∈ A
(�3) If ` α and ` β, then α � β, for all α, β ∈ A

(� 1) says that the formulae that are strictly more en-
sconced than α do not (even conjointly) imply α. Conditions
(� 2) and (� 3) say that tautologies are the most ensconced
formulae. If� is well-ranked/inversely well-ranked, then the
ensconcement (A,�) is well-ranked/inversely well-ranked.
If � is both well-ranked and inversely well-ranked then it is
a bounded ensconcement.

Given an ensconcement relation, a cut operator for α ∈
Cn(A) is defined by:

cut�(α) = {β ∈ A : {γ ∈ A : β ≺ γ} 6` α}.

A proper cut for α ∈ L is defined by:

cut≺(α) = {β ∈ A : {γ ∈ A : β � γ} 6` α}

2α ≺ β means α � β and β 6� α. α =� β means α � β and
β � α.

Observation 1 (Williams 1994a)
If α ∈ A, cut≺(α) = {β ∈ A : α ≺ β}
The previous observation says that when α is an explicit

belief, its proper cut is the subset of A such that its mem-
bers are strictly more ensconced than α. Other properties of
proper cut are:

Observation 2 Let (A,�) be a bounded ensconcement and
α, β ∈ Cn(A), then:

(a) Let 6` β. If cut≺(α) ⊆ cut≺(β), then cut�(α) ⊆
cut�(β).

(b) If ` β and 6` α, then cut�(β) ⊂ cut�(α).
Intuitively, an ensconcement is to belief bases as epis-

temic entrenchment is to belief sets. Williams explores this
relation:

Definition 3 (Williams 1994b) Let (A,�) be an ensconce-
ment. For α, β ∈ L, define ≤� to be given by: α ≤� β if
and only if either:
i) α 6∈ Cn(A), or ii) α, β ∈ Cn(A) and cut�(β) ⊆
cut�(α).

Observation 4 (Williams 1994b) If (A,�) is an enscon-
cement, then ≤� is an epistemic entrenchment related to
Cn(A).

Observation 5 (Williams 1994b) Given an ensconcement
(A,�), � is well-ranked (inversely well-ranked, bounded)
if and only if ≤� is well-ranked (inversely well-ranked,
bounded).

2.5 Brutal Contraction
Mary-Anne Williams (Williams 1994b) defines two oper-
ators for base contraction: The first one inspired in AGM
contraction (ensconcement-based contraction) and the sec-
ond one inspired in severe withdraw (brutal contraction). In
this paper we will focus in the second one. Brutal contrac-
tion, as Mary-Anne Williams says, “retains as little as nec-
essary of the theory base”.

Definition 6 (Williams 1994b) Let A be a belief base. An
operation − is a brutal base contraction on A if and only if
there is an ensconcement relation � on A such that:

β ∈ A− α if and only if β ∈ A and either (i) α ∈ Cn(∅)
or (ii) β ∈ cut≺(α)

In (Garapa, Fermé, and Reis 2016) the following ax-
iomatic characterization for brutal base contractions was
presented:

Observation 7 (Garapa, Fermé, and Reis 2016) Let A be a
belief base. An operator − of A is a brutal base contraction
on A if and only if it satisfies:

(Success) If 6` α, then A− α 6` α
(Inclusion) A− α ⊆ A
(Vacuity) If A 6` α, then A ⊆ A− α
(Failure) If ` α, then A− α = A
(Relative Closure) A ∩ Cn(A− α) ⊆ A− α
(Strong Inclusion) If A− β 6` α, then A− β ⊆ A− α

39

(Uniform Behaviour) If β ∈ A,A ` α andA−α = A−β,
then α ∈ Cn(A− β ∪ {γ ∈ A : A− β = A− γ})

The following observation lists some other well-known
postulates which are satisfied by the brutal base contraction
functions.

Observation 8 (Garapa, Fermé, and Reis 2016) Let A be
a belief base and − an operator on A that satisfies success,
inclusion, vacuity, failure, relative closure, strong inclusion
and uniform behaviour. Then − satisfies:

(a) If α ∈ A \A− β, then A− β ⊆ A− α.
(b) If A− α ⊂ A− β, then A− β ` α.
(c) If ` α and α ∈ A, then α ∈ A− β.
(d) If ` α↔ β, then A− α = A− β. (Extensionality)

3 Bounded Brutal Base Contraction
Functions

In this subsection we introduce the bounded brutal base con-
tractions and obtain an axiomatic characterization for that
class of functions.

Definition 9 Let A be a belief base. An operation − is a
bounded brutal base contraction on A if and only if it is a
brutal base contraction based on a bounded ensconcement.

We introduce the following postulates:

(Upper Bound) For every non-empty set X ⊆ A of
nontautological formulae, there exists α ∈ X such that
A− β ⊆ A− α for all β ∈ X
(Lower Bound) For every non-empty set X ⊆ A of
nontautological formulae, there exists α ∈ X such that
A− α ⊆ A− β for all β ∈ X
(Clustering) If β ∈ A, then there exists α ∈ A ∪ Cn(∅)
such that A− α = A− β ∪ {γ ∈ A : A− β = A− γ}

Upper Bound (respectively Lower Bound) states that ev-
ery non-empty set of nontautological formulae ofA contains
an element which is such that the result of contracting A by
that sentence is a superset (respectively a subset) of any set
which results of contracting A by one of the remaining sen-
tences of that subset.

Clustering asserts that for any sentence β inA there exists
some sentence α in A ∪ Cn(∅) such that the result of the
contraction of α from A is the set consisting of the union of
the result of contractingA by β with the set formed by all the
sentences of A which are such that the result of contracting
it from A coincides with the result of contracting A by β.

The two following observations present some interrela-
tions among the above proposed postulates and some of the
of the postulates included in the axiomatic characterization
that was obtained for the class of brutal base contraction.

Observation 10 LetA be a belief base and− an operator on
A that satisfies success, inclusion, failure, relative closure,
strong inclusion and lower bound. Then − satisfies cluster-
ing.

Observation 11 Let A be a belief base and − an operator
on A that satisfies failure, success, strong inclusion and clus-
tering. Then − satisfies uniform behaviour.

We are now in a position to present an axiomatic charac-
terization for the class of bounded brutal base contractions.
Theorem 12 (Axiomatic characterization of bounded brutal
base contraction functions) Let A be a belief base. An oper-
ator− onA is a bounded brutal base contraction onA if and
only if it satisfies success, inclusion, vacuity, failure, relative
closure, lower bound, upper bound and strong inclusion.

The following observation exposes another relevant prop-
erty of the bounded brutal base contractions which will be
useful further ahead. More precisely, it asserts that for any
non-tautological sentence α which is deducible from A it
holds that the result of contracting A by α coincides with
the result of the contraction of A by some sentence explic-
itly included in A.
Observation 13 LetA be a belief base and− an operator on
A that satisfies success, inclusion, failure, relative closure,
strong inclusion and lower bound. Then − satisfies:
For all α ∈ Cn(A) \ Cn(∅) there exists β ∈ A such that
A− α = A− β.

4 Relation between Bounded Brutal Base
Contraction and Ensconcement-based

Severe Withdrawal
In this section we will define and axiomatically character-
ize a particular kind of severe withdrawals which we will
show to be the contraction functions that correspond to the
bounded brutal base contractions in the context of belief set
contractions.

We start by noticing that, given a bounded ensconcement
(A,�), we can combine Definitions 3 and (R≤) in order to
define a contraction function on the belief set Cn(A). This
kind of functions is formally introduced in the following def-
inition.
Definition 14 ÷ is an ensconcement-based withdrawal re-
lated to (A,�) if and only if (A,�) is a bounded ensconce-
ment such that Cn(A)÷ α = Cn(A)÷≤� α, where ≤� is
the epistemic entrenchment with respect to Cn(A) defined
by Definition 3 and÷≤� is the severe withdrawal onCn(A)
defined by (R≤).

Comparing the above definition with Definitions 6 and 9 it
becomes clear that there is a strong interrelation among the
ensconcement-based severe withdrawals and the (bounded)
brutal base contractions. That interrelation is explicitly pre-
sented in the two following theorems. More precisely, given
a bounded ensconcement (A,�), these two results expose
how the �-based brutal contraction on A can be defined
from the ensconcement-based withdrawal related to (A,�)
and, vice-versa, how the latter can be defined by means of
the former.
Theorem 15 Let (A,�) be a bounded ensconcement,
− be the �-based brutal contraction, and ÷≤� be the
ensconcement-based severe withdrawal related to (A,�),
then A− α = (Cn(A)÷≤� α) ∩A.

40 studies on brutal contraction and severe withdrawal : preliminary report

Theorem 16 Let (A,�) be a bounded ensconcement,
− be the �-based brutal contraction, and ÷≤� be the
ensconcement-based severe withdrawal related to (A,�),
then Cn(A)÷≤� α = Cn(A− α).

4.1 Axiomatic Characterization of
ensconcement-based severe withdrawals

In this subsection we will present an axiomatic charac-
terization for the class of ensconcement-based severe with-
drawals. To do that we must start by introducing the follow-
ing postulate:
(Base-reduction) If Cn(A) ÷ α ` β, then
(Cn(A)÷ α) ∩A ` β

This postulate essentially states that that the result of con-
tracting the belief set Cn(A) by any sentence α coincides
with the logical closure of some subset of A. Indeed, it is
not hard to see that base-reduction is equivalent to the fol-
lowing postulate: ∀α∃A′ ⊆ A : Cn(A′) = Cn(A) ÷ α
(which is very similar to the postulate of finitude proposed
by Hansson (1999a)).

The following observation highlights that for a severe
withdrawal that satisfies the postulates of base-reduction and
lower bound it also holds that for any non-tautological sen-
tence α in Cn(A) the result of the contraction of Cn(A) by
α coincides with the result of the contraction of Cn(A) by
some sentence in A.

Observation 17 Let ÷ be an operator on Cn(A) that sat-
isfies (÷1), (÷2), (÷4), (÷9), base-reduction and lower
bound, then for all α ∈ Cn(A) \ Cn(∅) there exists β ∈ A
such that Cn(A)÷ α = Cn(A)÷ β.

We are now in a position to present the following ax-
iomatic characterization for the ensconcement-based severe
withdrawals.

Theorem 18 Let A be a belief base and ÷ be an operator
on Cn(A). ÷ satisfies (÷1) to (÷4), (÷6), (÷9), base-
reduction, upper bound and lower bound if and only if
there exists a bounded ensconcement such that ÷ is an
ensconcement-based withdrawal related to (A,�).

Theorems 15 and 16 expose how a base contraction func-
tion can be defined from a belief set contraction function
and, vice-versa. Combining those two results with the ax-
iomatic characterizations presented in Theorems 12 and 18
we can obtain the following results which highlight the cor-
respondence among sets of postulates for base contraction
and sets of postulates for belief set contraction.

Corollary 19 An operator − on A satisfies success, inclu-
sion, vacuity, failure, relative closure, strong inclusion, up-
per bound and lower bound if and only if there exists an
operator ÷ on Cn(A) that satisfies (÷1) to (÷4), (÷6),
(÷9), base-reduction, upper bound and lower bound such
that: A− α = Cn(A÷ α) ∩A.

Corollary 20 An operator ÷ on Cn(A) satisfies (÷1) to
(÷4), (÷6), (÷9), base-reduction, upper bound and lower
bound if and only if there exists an operator − on A that

satisfies success, inclusion, vacuity, failure, relative closure,
strong inclusion, upper bound and lower bound such that:
Cn(A)÷ α = Cn(A− α).

The two following observations consist of a slight refine-
ment of the right to left part of Corollary 20. More precisely
these results specify more precisely which properties of the
belief base contraction are needed in order to assure that the
belief set contraction obtained from it as exposed in Theo-
rem 16 satisfies certain postulates.
Observation 21 Let A be a belief base and − be an oper-
ator on A that satisfies success, inclusion, vacuity, failure,
relative closure and strong inclusion. If ÷ is an operator on
Cn(A) defined byCn(A)÷α = Cn(A−α) then÷ satisfies
(÷1) to (÷4), (÷6), (÷9) and base-reduction.
Observation 22 Let A be a belief base and − be an opera-
tor onA that satisfies success, inclusion, failure, relative clo-
sure, upper bound, lower bound and strong inclusion. If÷ is
an operator on Cn(A) defined by Cn(A)÷α = Cn(A−α)
then ÷ satisfies upper bound and lower bound.

5 Conclusions
We have presented an axiomatic characterizations for the
subclass of brutal base contractions formed by the brutal
contractions that are based on a bounded ensconcement re-
lation. We have also introduced and axiomatically charac-
terized the class of ensconcement-based severe withdrawals
which is formed by the severe withdrawals that are based
on epistemic entrenchment relations which are obtained
from an ensconcement relation using the construction pro-
posed by Mary-Anne Williams. Some results were presented
concerning the interrelation among the classes of bounded
brutal base contractions and of ensconcement-based severe
withdrawals. Finally we presented some results relating base
contraction postulates and belief set contraction postulates
by means of explicit definitions of belief set contractions
from base contractions and vice-versa.

Acknowledgements
We wish to thank the three reviewers for their comments
which have contributed to the improvement of this paper.

Appendix: Proofs
Previous Lemmas
Lemma 23 (Fermé, Krevneris, and Reis 2008)
(a) If 6` α, cut≺(α) 6` α.
(b) If A 6` α, cut≺(α) = A.
(c) If β ` α, then cut≺(α) ⊆ cut≺(β).
(d) If α � β, then cut≺(β) ⊆ cut≺(α).
(e) If cut≺(α) ` β, then cut≺(α ∧ β) = cut≺(α).
(f) If cut≺(α) 6` β, then cut≺(α ∧ β) = cut≺(β).
Lemma 24 (Rott and Pagnucco 1999, Observation 19(ii)) If
÷ is a severe withdrawal function, then÷ can be represented
as an entrenchement-based withdrawal where the relation ≤
on which ÷ is based is obtained by
(Def ≤ from ÷) α ≤ β if and only if α 6∈ K ÷ β or ` β
and ≤ satisfies (EE1) to (EE5).

41

Lemma 25 Let (A,�) be a bounded ensconcement and
cut�(α) 6= ∅. Then there exists β ∈ cut�(α) such that
cut�(β) = cut�(α).

Lemma 26 Let (A,�) be a bounded ensconcement and
α ∈ Cn(A). Then cut�(α) ` α.

Lemma 27 Let (A,�) be a bounded ensconcement and
α, β ∈ Cn(A). If cut≺(α) ⊂ cut≺(β), then cut�(α) ⊂
cut�(β).

Proofs
Proof of Theorem 12
From bounded brutal base contraction to postulates
Let − be a bounded brutal base contraction operator on A.
By Observation 7 − satisfies success, inclusion, vacuity,
failure, relative closure and strong inclusion. It remains to
show that − satisfies upper bound and lower bound.
Upper Bound Let X ⊆ A be a non empty set of non-
tautological formulae. Since � is well ranked there exists
β ∈ X such that β � α for all α ∈ X . Hence, by
Lemma 23 (d), there exists β ∈ X for all α ∈ X such that
cut≺(α) ⊆ cut≺(β). Therefore, by definition of − there
exists β ∈ X for all α ∈ X such that A− α ⊆ A− β.
Lower Bound Analogous to upper bound.
From postulates to bounded brutal base contraction
Let − be an operator on A that satisfies success, inclusion,
vacuity, failure, relative closure, lower bound, upper bound
and strong inclusion. From Observation 10 and Observation
11 it follows that − satisfies uniform behaviour. Let � be
defined by:

α � β iff

{
A− β ⊆ A− α and 6` α
or
` β

According to the Postulates to Construction part of the
proof of Observation 7 � satisfies (� 1) - (� 3) and is such
that

A− α =

{
cut≺(α) if 6` α
A otherwise

It remains to prove that � is bounded. To do so we must
prove that � is well-ranked and inversely well-ranked.
(� is well-ranked) Let X 6= ∅ and X ⊆ A. We will prove
by cases:
Case 1) All formulae in X are tautologies. Let β be one of
those formulas. Hence by (� 3) β � α for all α ∈ X .
Case 2) All formulae in X are non-tautological. By upper
bound there exists β ∈ X such that A − α ⊆ A − β for all
α ∈ X . Hence, by definition of �, there exists β ∈ X such
that β � α for all α ∈ X .
Case 3) There are some formulae in X , that are tautological
and others that are not. Consider X ′ = X \ Cn(∅). Hence,
by the previous case, there exists β ∈ X ′ such that β � α′

for all α′ ∈ X ′. Therefore, it follows from (� 3) that β � α
for all α ∈ X .
(� is inversely well-ranked) Let X 6= ∅ and X ⊆ A. We
will prove by cases:
Case 1) There are some β ∈ X such that ` β. Then, by
definition of �, α � β for all α ∈ X .

Case 2) All formulae in X are non-tautological. By lower
bound there exists β ∈ X such that A − β ⊆ A − α for all
α ∈ X . Hence, by definition of �, there exists β ∈ X such
that α � β for all α ∈ X .

Proof of Theorem 15
We will prove by cases:
Case 1) ` α. It follows that A − α = A and (Cn(A) ÷≤�
α) ∩A = A.
Case 2) A 6` α. It follows that (Cn(A) ÷≤� α) ∩ A = A
and that A − α = cut≺(α). By Lemma 23 (b), it follows
that cut≺(α) = A.
Case 3)A ` α and 6` α.
We will prove that A−α = (Cn(A)÷≤� α)∩A by double
inclusion.
(⊆) Let β ∈ A − α. It follows that β ∈ A. It remains to
prove that β ∈ Cn(A) ÷≤� α, i.e. that β ∈ {ψ ∈ Cn(A) :
cut�(ψ) ⊂ cut�(α)}.
If ` β. It follows trivially by Observation 2 (b).
Assume now that 6` β. β ∈ cut≺(α). Hence cut≺(β) ⊂
cut≺(α). It follows, from Lemma 27 that cut�(β) ⊂
cut�(α).
(⊇) Let β ∈ (Cn(A) ÷≤� α) ∩ A. If ` β, then it follows
from (� 2) that {ψ ∈ A : β � ψ} ⊆ Cn(∅). Therefore,
since 6` α, it follows that β ∈ cut≺(α) = A − α. Assume
now that 6` β. From β ∈ (Cn(A) ÷≤� α) ∩ A it follows
that β ∈ A and cut�(β) ⊂ cut�(α). Hence there exists
γ ∈ A such that γ ∈ cut�(α) and γ 6∈ cut�(β). Hence,
{ψ ∈ A : γ ≺ ψ} 6` α and {ψ ∈ A : γ ≺ ψ} ` β. Assume
by reductio that β 6∈ A − α i.e. that β 6∈ cut≺(α). Hence,
{ψ ∈ A : β � ψ} ` α. From {ψ ∈ A : β � ψ} ` α
and {ψ ∈ A : γ ≺ ψ} 6` α it follows that β � γ.
Therefore, since {ψ ∈ A : γ ≺ ψ} ` β, it follows that
{ψ ∈ A : β ≺ ψ} ` β which contradicts (� 1).

Proof of Theorem 16
We will prove by cases:
Case 1) ` α. ThenCn(A)÷≤�α = Cn(A) andA−α = A.
Hence Cn(A− α) = Cn(A) = Cn(A)÷≤� α.
Case 2) A 6` α. Then Cn(A) ÷≤� α = Cn(A) and, by
Lemma 23 (b),A−α = cut≺(α) = A. HenceCn(A−α) =
Cn(A) = Cn(A)÷≤� α.
Case 3)A ` α and 6` α. Hence Cn(A) ÷� α = {ψ ∈
Cn(A) : α <� ψ} = {ψ ∈ Cn(A) : cut�(ψ) ⊂
cut�(α)}. We will prove that Cn(A−α) = Cn(A)÷≤� α
by double inclusion.
(⊆) Let β ∈ Cn(A − α). If ` β, then β ∈ Cn(A)
and, by Observation 2 (b), cut�(β) ⊂ cut�(α). Hence
β ∈ Cn(A)÷� α.
Assume now that 6` β. From β ∈ Cn(A− α) it follows that
cut≺(α) ` β. Hence, by Lemma 23 (e), cut≺(α ∧ β) =
cut≺(α). From α ∧ β ` β by Lemma 23 (c) it follows
that cut≺(β) ⊆ cut≺(α ∧ β). Hence cut≺(β) ⊆ cut≺(α).
From which, together with Lemma 23 (a) and cut≺(α) ` β
it follows that cut≺(β) ⊂ cut≺(α). Hence, by Lemma
27, it follows that cut�(β) ⊂ cut�(α). Therefore, since
β ∈ Cn(A), it follows that β ∈ Cn(A)÷≤� α.
(⊇) Let β ∈ Cn(A) ÷≤� α. Hence, β ∈ Cn(A) and
cut�(β) ⊂ cut�(α). Assume by reductio that β 6∈ Cn(A−

42 studies on brutal contraction and severe withdrawal : preliminary report

α). Therefore cut≺(α) 6` β. By Lemma 23 (f) it follows that
cut≺(α ∧ β) = cut≺(β). From α ∧ β ` α, by Lemma 23
(c), it follows that cut≺(α) ⊆ cut≺(β). From Observation
2 (a) it follows that cut�(α) ⊆ cut�(β). Contradiction.

Proof of Theorem 18
(⇐) Let ÷ be an ensconcement-based withdrawal related
to (A,�) and let ≤=≤�. Hence ÷ satisfies the postulates
for severe withdrawals. It remains to show that ÷ satisfies:
base-reduction, upper bound and lower bound.
Upper Bound: Let ÷ be an ensconcement-based
withdrawal related to (A,�). Let X 6= ∅ and
X ⊆ Cn(A) \ Cn(∅). From Observation 5, since
(A,�) is a bounded ensconcement, it follows that ≤� is
bounded. Hence, there exists β ∈ X such that β ≤ α for all
α ∈ X . We will prove that Cn(A) ÷ α ⊆ Cn(A) ÷ β for
all α ∈ X . Let γ ∈ Cn(A) ÷ α. Hence, by definition of ÷,
γ ∈ Cn(A) and α < γ. By EE1, since β ≤ α and α < γ
it follows that β < γ. Hence γ ∈ Cn(A) ÷ β. Therefore
Cn(A)÷ α ⊆ Cn(A)÷ β.
Lower Bound: Analogous to upper bound.
Base-reduction: Let Cn(A) ÷ α ` β. We will prove that
(Cn(A)÷ α) ∩A ` β by cases:
Case 1) ` β. Follows trivially.
Case 2) α 6∈ Cn(A) or ` α. Follows trivially by (R≤).
Case 3) 6` β, α ∈ Cn(A) and 6` α. From
Cn(A) ÷ α ` β it follows, by (R≤), that X ` β where
X = {ψ ∈ Cn(A) : cut�(ψ) ⊂ cut�(α)}.X\Cn(∅) 6= ∅,
since 6` β. Let ψ ∈ X \ Cn(∅). Assume that cut�(ψ) = ∅
and let θ ∈ Cn(∅). Hence, by EE5, it follows that
ψ < θ. Hence, by Definition 3, cut�(θ) ⊂ cut�(ψ) = ∅.
Contradiction. Hence cut�(ψ) 6= ∅. From Lemma
25, and since � is bounded, it follows that there ex-
ists δ ∈ cut�(ψ) such that cut�(δ) = cut�(ψ). Let
Y = {µ ∈ A : cut�(µ) ⊂ cut�(α)}. Let µ1 ∈ Y
such that µ1 � µ for all µ ∈ Y . Let λ ∈ cut�(µ1).
Hence cut�(λ) ⊆ cut�(µ1), from which follows that
cut�(λ) ⊂ cut�(α). Therefore λ ∈ Y . Let φ ∈ Y . It
follows that µ1 � φ. Hence φ ∈ cut�(µ1). Therefore
Y = cut�(µ1). By Lemma 26 cut�(ψ) ` ψ. Hence,
since cut�(δ) = cut�(ψ) it follows that cut�(δ) ` ψ.
From cut�(δ) ⊂ cut�(α) it follows that δ ∈ Y . Hence
µ1 � δ. Therefore cut�(δ) ⊆ cut�(µ1) = Y , and so
Y ` ψ. Hence, for all ψ ∈ Cn(A) ÷ α it follows that
Y ` ψ. Therefore, since Cn(A) ÷ α ` β, it follows that
Y ` β. Y ⊆ (Cn(A)÷α)∩A. Hence (Cn(A)÷α)∩A ` β.

(⇒) Let A be a belief base and ÷ be an operator on
Cn(A). ÷ satisfies (÷1) to (÷4), (÷6), (÷9), base-
reduction, upper bound and lower bound. Let � be a binary
relation on A defined by:
α � β if and only if α 6∈ Cn(A)÷ β or ` β.
We will prove that � is a bounded ensconcement.
(�1) Let γ ∈ A \ Cn(∅) we must show that
H = {α ∈ A : γ ≺ α} 6` γ. It is enough to show
that H \ Cn(∅) 6` γ. Let α ∈ A \ Cn(∅) and γ ≺ α. Then,
γ � α and α 6� γ. Hence, by definition of �, it follows that
γ 6∈ Cn(A)÷α, α ∈ Cn(A)÷γ and 6` γ. H ⊆ Cn(A)÷γ
where, 6` γ. Hence, since by (÷4) Cn(A)÷γ 6` γ it follows
that H 6` γ.

(�2) Let α, β ∈ A be such that 6` α and ` β. From ` β
it follows, by definition of �, that α � β. Assume by
reductio that 6` α, ` β and β � α. Hence, by definition of
�, β 6∈ Cn(A)÷ α or ` α. Contradiction, since 6` α and by
(÷1) β ∈ Cn(A)÷ α.
(�3) Follows trivially by definition of �.
(� is transitive) Let α � β and β � γ. Hence, by
definition of �, it follows that (α 6∈ Cn(A) ÷ β or ` β)
and (β 6∈ Cn(A) ÷ γ or ` γ). Hence, α 6∈ Cn(A) ÷ β and
(β 6∈ Cn(A) ÷ γ or ` γ) or (` β and (β 6∈ Cn(A) ÷ γ or
` γ)). Hence, we have four cases to consider:
Case 1) α 6∈ Cn(A) ÷ β and β 6∈ Cn(A) ÷ γ. From
(÷9) it follows that Cn(A) ÷ γ ⊆ Cn(A) ÷ β. Hence,
α 6∈ Cn(A)÷ γ. Therefore α � γ, by definition of �.
Case 2) α 6∈ Cn(A) ÷ β and ` γ. α � γ follows trivially
by definition of �.
Case 3) ` β and β 6∈ Cn(A)÷ γ. Contradicts (÷1).
Case 4) ` β and ` γ. α � γ follows trivially by definition
of �.
(� is connected) Let α 6� β. Hence α ∈ Cn(A) ÷ β and
6` β. We will consider two cases:
Case 1) ` α. Hence β � α, by definition of �.
Case 2) 6` α. Hence, by ÷ expulsiveness, β 6∈ Cn(A) ÷ α.
Therefore, by definition of �, β � α.
(� is well-ranked) Let X ⊆ A a non empty set. We will
prove by cases:
Case 1) X ⊆ Cn(∅). Trivial.
Case 2) X 6⊆ Cn(∅). Let X ′ = X \ Cn(∅). Hence,
by ÷ upper bound there exists β ∈ X ′ such that
Cn(A) ÷ α ⊆ Cn(A) ÷ β for all α ∈ X ′. By (÷4)
β 6∈ Cn(A) ÷ α for all α ∈ X ′. Hence, by definition of
�, there exists β ∈ X ′ such that β � α for all α ∈ X ′. If
X = X ′ trivial. Assume now thatX 6= X ′. Let γ ∈ X \X ′.
Hence ` γ and by (� 2) it follows that β � γ. Therefore,
there exists β ∈ X such that β � α for all α ∈ X .
(� is inversely well-ranked) Let X ⊆ A a non empty set.
We will consider two cases:
Case 1)X ∩ Cn(∅) 6= ∅. Let β ∈ X ∩ Cn(∅) hence, by
definition of �, α � β for all α ∈ X .
Case 2)X ∩ Cn(∅) = ∅. Hence, by ÷ lower bound, there
exists β ∈ X such that Cn(A) ÷ β ⊆ Cn(A) ÷ α, for all
α ∈ X . By (÷4) α 6∈ Cn(A)÷ β, for all α ∈ X . Hence, by
definition of � there exists β ∈ X such that α � β, for all
α ∈ X .
We have proved that � is a bounded ensconcement.
Let ≤� be as in Definition 3. According to Observa-
tion 4 and Observation 5 ≤� is a bounded epistemic
entrenchment related to Cn(A). It remains to show that
Cn(A)÷ α = Cn(A)÷≤� α, where ÷≤� is defined (as in
(R≤))by:
Cn(A)÷≤� α ={
Cn(A) ∩ {ψ : α <� ψ} if α ∈ Cn(A)and 6` α
Cn(A) otherwise

According to Lemma 24 and since ÷ is a severe with-
drawal function, the epistemic entrenchment ≤ on which ÷
is based on is such that: α ≤ β if and only if α 6∈ Cn(A)÷β
or ` β. Thus to prove that Cn(A) ÷ α = Cn(A) ÷≤� α it
is enough to show that:

43

α ≤� β if and only if α 6∈ Cn(A)÷ β or ` β.

(⇒) Let α ≤� β. Hence, by definition of ≤�, α ≤� β if
and only if:
i) α 6∈ Cn(A), or
ii) α, β ∈ Cn(A) and cut�(β) ⊆ cut�(α).
We will prove by cases:
Case 1) α 6∈ Cn(A). Then, by (÷2), α 6∈ Cn(A)÷ β.
Case 2) α, β ∈ Cn(A) and cut�(β) ⊆ cut�(α).
Case 2.1) ` β. Trivial.
Case 2.2) 6` β.
{γ ∈ A : {δ ∈ A : γ ≺ δ} 6` β} ⊆ {γ ∈ A : {δ ∈ A : γ ≺
δ} 6` α}.
Hence,
{γ ∈ A : {δ ∈ A : (γ 6∈ Cn(A) ÷ δ and δ ∈ Cn(A) ÷
γ and 6` γ) or (` δ and δ ∈ Cn(A)÷ γ and 6` γ)} 6` β} ⊆
{γ ∈ A : {δ ∈ A : (γ 6∈ Cn(A) ÷ δ and δ ∈ Cn(A) ÷
γ and 6` γ) or (` δ and δ ∈ Cn(A) ÷ γ and 6` γ)} 6` α}.
Therefore according to (÷1) and (÷4),
X = {γ ∈ A : {δ ∈ A : (γ 6∈ Cn(A) ÷ δ and δ ∈
Cn(A)÷γ) or (` δ and 6` γ)} 6` β} ⊆ Y = {γ ∈ A : {δ ∈
A : (γ 6∈ Cn(A) ÷ δ and δ ∈ Cn(A) ÷ γ) or (` δ and 6`
γ)} 6` α}. Assume by reductio that α ∈ Cn(A) ÷ β.
From α ∈ Cn(A) ÷ β it follows, by base-reduction, that
Cn(A) ÷ β ∩ A ` α. By compactness, there exists a fi-
nite subset of Cn(A)÷ β ∩A, H = {α1, ..., αn}, such that
H ` α. Let us assume that H ∩Cn(∅) = ∅. For all αi ∈ H ,
αi ∈ Cn(A)÷ β = Cn(A)÷ β′, for some β′ ∈ A (by Ob-
servation 17). Hence, by expulsiveness, β′ 6∈ Cn(A) ÷ αi.
Therefore β′ 6∈ Y , since H ⊆ Z = {δ ∈ A : (β′ 6∈
Cn(A) ÷ δ and δ ∈ Cn(A) ÷ β′) or (` δ and 6` β′)}. On
the other hand β′ ∈ X , since Z ⊆ Cn(A)÷β′, and by (÷4)
Cn(A)÷ β′ 6` β. Hence X 6⊆ Y . Contradiction.
(⇐) Let α 6∈ Cn(A)÷ β or ` β. We will prove by cases:
Case 1) α 6∈ Cn(A). Trivial.
Case 2) α ∈ Cn(A).
Case 2.1) ` β. Then α, β ∈ Cn(A) and cut�(β) ⊆
cut�(α).
Case 2.2) α 6∈ Cn(A) ÷ β and 6` β. Hence, it follows that
β ∈ Cn(A), 6` α and Cn(A) ÷ β ⊆ Cn(A) ÷ α, by (÷3),
(÷1) and (÷9), respectively. Let us assume by reductio that
cut�(β) 6⊆ cut�(α). Hence there exists ψ ∈ A such that
ψ ∈ cut�(β) and ψ 6∈ cut�(α). From which follows that
6` ψ, C = {δ ∈ A : (ψ 6∈ Cn(A) ÷ δ and δ ∈ Cn(A) ÷
ψ) or (` δ and 6` ψ)} 6` β and C ` α. C ⊆ Cn(A) ÷ ψ.
Then Cn(A)÷ ψ ` α. Hence, by (÷4) and linearity, it fol-
lows that Cn(A) ÷ α ⊂ Cn(A) ÷ ψ. From Cn(A) ÷ β ⊆
Cn(A) ÷ α it follows that Cn(A) ÷ β ⊂ Cn(A) ÷ ψ.
By (÷9), β ∈ Cn(A) ÷ ψ. Therefore, by base-reduction,
Cn(A)÷ψ∩A ` β. On the other handCn(A)÷ψ∩A ⊆ C.
Hence C ` β. Contradiction.

References
Alchourrón, C., and Makinson, D. 1985. On the logic of
theory change: Safe contraction. Studia Logica 44:405–422.
Alchourrón, C.; Gärdenfors, P.; and Makinson, D. 1985. On
the logic of theory change: Partial meet contraction and re-
vision functions. Journal of Symbolic Logic 50:510–530.

Arló-Costa, H., and Levi, I. 2006. Contraction: On
the decision-theoretical origins of minimal change and en-
trenchment. Synthese 152:1:129–154.
Fermé, E., and Hansson, S. O. 2011. AGM 25 years:
Twenty-five years of research in belief change. Journal of
Philosophical Logic 40:295–331.
Fermé, E., and Rodriguez, R. 1998. A brief note about the
Rott contraction. Logic Journal of the IGPL 6(6):835–842.
Fermé, E.; Krevneris, M.; and Reis, M. 2008. An axiomatic
characterization of ensconcement-based contraction. Jour-
nal of Logic and Computation 18(5):739–753.
Fermé, E. 1998. On the logic of theory change: Contraction
without recovery. Journal of Logic, Language and Informa-
tion 7:127–137.
Fuhrmann, A. 1991. Theory contraction through base con-
traction. Journal of Philosophical Logic 20:175–203.
Garapa, M.; Fermé, E.; and Reis, M. D. L. 2016. Ensconce-
ment and contraction. (unpublished manuscript).
Gärdenfors, P., and Makinson, D. 1988. Revisions of knowl-
edge systems using epistemic entrenchment. In Vardi, M. Y.,
ed., Proceedings of the Second Conference on Theoretical
Aspects of Reasoning About Knowledge, 83–95. Los Altos:
Morgan Kaufmann.
Gärdenfors, P. 1982. Rules for rational changes of belief.
In Pauli, T., ed., Philosophical Essays dedicated to Lennart
Ȧqvist on his fiftieth birthday, number 34 in Philosophical
Studies, 88–101.
Gärdenfors, P. 1988. Knowledge in Flux: Modeling the Dy-
namics of Epistemic States. Cambridge: The MIT Press.
Grove, A. 1988. Two modellings for theory change. Journal
of Philosophical Logic 17:157–170.
Hansson, S. O. 1991. Belief contraction without recovery.
Studia Logica 50:251–260.
Hansson, S. O. 1994. Kernel contraction. Journal of Sym-
bolic Logic 59:845–859.
Hansson, S. O. 1999a. Revision of belief sets and belief
bases. In Dubois, D., and Prade, H., eds., Belief Change,
Handbook of Defeasible Reasoning and Uncertainty Man-
agement Systems. Dordrecht: Springer Netherlands. 17–75.
Hansson, S. O. 1999b. A Textbook of Belief Dynamics. The-
ory Change and Database Updating. Applied Logic Series.
Dordrecht: Kluwer Academic Publishers.
Levi, I. 1991. The fixation of belief and its undoing: chang-
ing beliefs through inquiry. Cambridge: Cambridge Univer-
sity Press.
Lindström, S., and Rabinowicz, W. 1991. Epistemic en-
trenchment with incomparabilities and relational belief revi-
sion. In Fuhrmann, and Morreau., eds., The Logic of Theory
Change, 93–126. Berlin: Springer-Verlag.
Niederée, R. 1991. Multiple contraction: A further case
against Gärdenfors’ principle of recovery. In Fuhrmann,
and Morreau., eds., The Logic of Theory Change, 322–334.
Berlin: Springer-Verlag.
Rott, H., and Pagnucco, M. 1999. Severe withdrawal (and
recovery). Journal of Philosophical Logic 28:501–547.

44 studies on brutal contraction and severe withdrawal : preliminary report

Rott, H. 1991. Two methods of constructing contractions
and revisions of knowledge systems. Journal of Philosoph-
ical Logic 20:149–173.
Rott, H. 1995. “Just because”. Taking belief bases very se-
riously. In Hansson, S. O., and Rabinowicz, W., eds., Logic
for a change, number 9 in Uppsala Prints and Preprints in
Philosophy. Dep. of Philosophy, Uppsala University. 106–
124.
Williams, M.-A. 1992. Two operators for theory bases.
In Proc. Australian Joint Artificial Intelligence Conference,
259–265. World Scientific.
Williams, M.-A. 1994a. On the logic of theory base change.
In MacNish., ed., Logics in Artificial Intelligence, number
835 in Lecture Notes Series in Computer Science. Springer
Verlag.
Williams, M.-A. 1994b. Transmutations of knowledge sys-
tems. In Doyle, J.; Sandewall, E.; and Torasso, P., eds.,
Proceedings of the fourth International Conference on Prin-
ciples of Knowledge Representation and Reasoning. Bonn,
Germany: Morgan Kaufmann. 619–629.
Williams, M.-A. 1995. Iterated theory base change: A com-
putational model. In Proc. of the 14th IJCAI, 1541–1547.

45

A strengthening of rational closure in DLs:
reasoning about multiple aspects

Valentina Gliozzi
Center for Logic, Language and Cognition

Dipartimento di Informatica - Università di Torino - Italy
valentina.gliozzi@unito.it

Abstract
We propose a logical analysis of the concept of typicality,
central in human cognition (Rosch,1978). We start from a
previously proposed extension of the basic Description Logic
ALC with a typicality operator T that allows to consistently
represent the attribution to classes of individuals of properties
with exceptions (as in the classic example (i)typical birds fly,
(ii) penguins are birds but (iii)typical penguins don’t fly). We
then strengthen this extension in order to separately reason
about the typicality with respect to different aspects (e.g.,
flying, having nice feather: in the previous example, penguins
may not inherit the property of flying, for which they are
exceptional, but can nonetheless inherit other properties, such
as having nice feather).

Introduction
In (Giordano et al. 2015) it is proposed a rational closure
strengthening of ALC. This strengthening allows to per-
form non monotonic reasoning in ALC in a computationally
efficient way. The extension, as already the related logic
ALC + Tmin proposed in (Giordano et al. 2013a) and the
weaker (monotonic) logic ALC + T presented in (Giordano
et al. 2009), allows to consistently represent typical proper-
ties with exceptions that could not be represented in standard
ALC.
For instance, in all the above logics one can say that:

SET 1:
Typical students don’t earn money
Typical working students do earn money
Typical apprentice working students don’t earn money

without having to conclude that there cannot exist working
students nor apprentice working students. On the contrary,
in standard ALC typicality cannot be represented, and these
three propositions can only be expressed by the stronger ones:

SET 2:
Students don’t earn money (Student v ¬ EarnMoney)

Working students do earn money (Worker u Student v EarnMoney)

Apprentice working students don’t earn money (Worker u Ap-

prentice u Student v ¬ EarnMoney)

These propositions are consistent inALC only if there are no
working students nor apprentice working students.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In all the extensions of ALC mentioned above one can
represent the set of propositions in SET1 by means of a
typicality operator T that, given a concept C (e.g. Student)
singles out the most typical instances of C: so, for instance,
T(Student) refers to the typical instances of the concept Stu-
dent. The semantics of T is given by means of a preference
relation < that compares the typicality of two individuals:
for any two x and y, x < y means that x is more typical
than y. Typical instances of a concept C are those minimal
with respect to < (formally, as we will see later, (T(C))I =
min<(C)I , where min<(C)I = {x ∈ CI :6 ∃y ∈ CI s.t.
y < x}).

The operator T has all the properties that, in the analy-
sis of Kraus Lehmann and Magidor (Kraus, Lehmann, and
Magidor 1990) any non monotonic entailment should have.
For instance, T satisfies the principle of cautious mono-
tonicity, according to which if T(Student) v Y oung, then
T(Student) = T(Student u Y oung)). The precise rela-
tions between the properties of T and preferential entailment
are established in (Giordano et al. 2009).

Although the extensions of ALC with the typicality opera-
tor T allow to express SET1 of propositions, the resulting
logic is monotonic, and it does not allow to perform some
wanted, non monotonic inferences. For instance, it does not
allow to deal with irrelevance which is the principle that from
the fact that typical students are young, one would want to
derive that typical blond students also are young, since being
blond is irrelevant with respect to youth. As another example,
when knowing that an individual, say John, is a student, and
given SET1 of propositions, one would want to conclude
that John is a typical student and therefore does not earn
money. On the other hand, when knowing that John is a
working student, one would want to conclude that he is a
typical working student and therefore does earn money. In
other words one would want to assume that an individual is a
typical instance of the most specific class it belongs to, in the
absence of information to the contrary.

These stronger inferences all hold in the strengthen-
ing of ALC + T presented in (Giordano et al. 2013a;
2015). In particular, (Giordano et al. 2015) proposes an
adaptation to ALC of the well known mechanism of rational
closure, first proposed by Lehman and Magidor in (Lehmann
and Magidor 1992). From a semantic point of view, this
strengthening of ALC + T corresponds to restricting one’s

47

attention to minimal models, that minimize the height (rank)
of all domain elements with respect to < (i.e. that minimize
the length of the <-chains starting from all individuals). Un-
der the condition that the models considered are canonical,
the semantic characterization corresponds to the syntacti-
cal rational closure. This semantics supports all the above
wanted inferences, and the nice computational properties of
rational closure guarantee that whether the above inferences
are valid or not can be computed in reasonable time.

The main drawback of rational closure is that it is an all-
or-nothing mechanism: for any subclass C ′ of C it holds
that either the typical members of C ′ inherit all the properties
of C or they don’t inherit any property. Once the typical
members of C ′ are recognized as exceptional with respect to
C for a given aspect, they become exceptional for all aspects.
Consider the classic birds/penguins example, expressed by
propositions:

SET 3:
Typical birds have nice feather
Typical birds fly
Penguins are birds
Typical penguins do not fly

In this case, since penguins are exceptional with respect to
the aspect of flying, they are non-typical birds, and for this
reason they do not inherit any of the typical properties of
birds.

On the contrary, given SET3 of propositions, one wants
to conclude that:
• (**) Typical penguins have nice feather
This is to say that one wants to separately reason about the
different aspects: the property of flying is not related to the
property of having nice feather, hence we want to separately
reason on the two aspects.

Here we propose a strengthening of the semantics used for
rational closure inALC (Giordano et al. 2015) that only used
a single preference relation < by allowing, beside <, several
preference relations that compare the typicality of individuals
with respect to a given aspect. Obtaining a strengthening
of rational closure is the purpose of this work. This puts
strong constraints on the resulting semantics, and defines
the horizon of this work. In this new semantics we can ex-
press the fact that, for instance, x is more typical than y with
respect to the property of flying but y is more typical that x
with respect to some other property, as the property of having
nice feather. To this purpose we consider preference rela-
tions indexed by concepts that stand for the above mentioned
aspects under which we compare individuals. So we will
write that x <A y to mean that x is preferred to y for what
concerns aspect A: for instance x <Fly y means that x is
more typical than y with respect to the property of flying.

We therefore proceed as follows: we first recall the se-
mantics of the extension of ALC with a typicality operator
which was at the basis of the definition of rational closure
and semantics in (Giordano et al. 2013b; 2015). We then
expand this semantics by introducing several preference re-
lations, that we then minimize obtaining our new minimal
models’ mechanism. As we will see this new semantics leads
to a strengthening of rational closure, allowing to separately
reason about the inheritance of different properties.

The operator T and the General Semantics
Let us briefly recall the logicALC+TR which is at the basis
of a rational closure construction proposed in (Giordano et al.
2015) for ALC. The intuitive idea of ALC +TR is to extend
the standard ALC with concepts of the form T(C), whose
intuitive meaning is that T(C) selects the typical instances
of a concept C, to distinguish between the properties that
hold for all instances of concept C (C v D), and those that
only hold for the typical such instances (T(C) v D). The
ALC + TR language is defined as follows: CR := A | > |
⊥ | ¬CR | CR u CR | CR t CR | ∀R.CR | ∃R.CR, and
CL := CR | T(CR), where A is a concept name and R a
role name. A KB is a pair (TBox, ABox). TBox contains a
finite set of concept inclusions CL v CR. ABox contains a
finite set of assertions of the form CL(a) and R(a, b), where
a, b are individual constants.
The semantics of ALC + TR is defined in terms of rational
models: ordinary models of ALC are equipped with a prefer-
ence relation < on the domain, whose intuitive meaning is to
compare the “typicality” of domain elements: x < y means
that x is more typical than y. Typical members of a concept
C, instances of T(C), are the members x of C that are min-
imal with respect to < (such that there is no other member
of C more typical than x). In rational models < is further
assumed to be modular: for all x, y, z ∈ ∆, if x < y then
either x < z or z < y. These rational models characterize
ALC + TR.
Definition 1 (Semantics of ALC + TR (Giordano et al. 2015))
A modelM of ALC + TR is any structure 〈∆, <, I〉 where:
∆ is the domain; < is an irreflexive, transitive, and modular
relation over ∆ that satisfies the finite chain condition(there
is no infinite <-descending chain, hence if S 6= ∅, also
min<(S) 6= ∅); I is the extension function that maps
each concept name C to CI ⊆ ∆, each role name R to
RI ⊆ ∆I × ∆I and each individual constant a ∈ O to
aI ∈ ∆. For concepts of ALC, CI is defined in the usual
way. For the T operator, we have (T(C))I = min<(CI).

As shown in (Giordano et al. 2015), the logic ALC + TR

enjoys the finite model property and finiteALC+TR models
can be equivalently defined by postulating the existence of a
function kM : ∆ 7−→ N, where kM assigns a finite rank to
each world: the rank kM of a domain element x ∈ ∆ is the
length of the longest chain x0 < · · · < x from x to a minimal
x0 (s. t. there is no x′ with x′ < x0). The rank kM(CR) of
a concept CR inM is i = min{kM(x) : x ∈ CIR}.

A modelM satisfies a knowledge base K=(TBox,ABox)
if it satisfies its TBox (and for all inclusions C v D in
TBox, it holds CI ⊆ DI), and its ABox (for all C(a) in
ABox, aI ∈ CI , and for all aRb in ABox, (aI , bI) ∈ RI). A
query F (either an assertion CL(a) or an inclusion relation
CL v CR) is logically (rationally) entailed by a knowledge
base K (K |=ALC+TR F) if F holds in all models satisfying
K.

Although the typicality operator T itself is nonmonotonic
(i.e. T(C) v D does not imply T(C u E) v D), the logic
ALC + TR is monotonic: what is logically entailed by K is
still entailed by any K ′ with K ⊆ K ′.

In (Giordano et al. 2013b; 2015) the non monotonic mech-
anism of rational closure has been defined over ALC + TR,

48 a strengthening of rational closure in dls : reasoning about multiple aspects

which extends to DLs the notion of rational closure pro-
posed in the propositional context by Lehmann and Magidor
(Lehmann and Magidor 1992). The definition is based on
the notion of exceptionality. Roughly speaking T(C) v D
holds (is included in the rational closure) of K if C (indeed,
C uD) is less exceptional than C u ¬D. We briefly recall
this construction and we refer to (Giordano et al. 2013b;
2015) for full details. Here we only consider rational closure
of TBox, defined as follows.

Definition 2 (Exceptionality of concepts and inclusions)
Let TB be a TBox and C a concept. C is said to be excep-
tional for TB if and only if TB |=ALC+TR T(>) v ¬C.
A T-inclusion T(C) v D is exceptional for TB if C is
exceptional for TB . The set of T-inclusions of TB which are
exceptional in TB will be denoted as E(TB).

Given a DL TBox, it is possible to define a sequence of
non increasing subsets of TBox ordered according to the
exceptionality of the elements E0 ⊇ E1, E1 ⊇ E2, . . . by
letting E0 = TBox and, for i > 0, Ei = E(Ei−1) ∪ {C v
D ∈ TBox s.t. T does not occurr in C}. Observe that,
being KB finite, there is an n ≥ 0 such that, for all m >
n,Em = En or Em = ∅. A concept C has rank i (denoted
rank(C) = i) for TBox, iff i is the least natural number for
which C is not exceptional for Ei. If C is exceptional for all
Ei then rank(C) =∞ (C has no rank).

Rational closure builds on this notion of exceptionality:

Definition 3 (Rational closure of TBox) Let KB = (TBox,
ABox) be a DL knowledge base. The rational closure of TBox
TBox = {T(C) v D | either rank(C) < rank(C u ¬D)
or rank(C) =∞} ∪ {C v D | KB |=ALC+TR C v D},
where C and D are ALC concepts.

As a very interesting property, in the context of DLs, the
rational closure has a very interesting complexity: deciding
if an inclusion T(C) v D belongs to the rational closure of
TBox is a problem in EXPTIME (Giordano et al. 2015).

In (Giordano et al. 2015) it is shown that the semantics
corresponding to rational closure can be given in terms of
minimal canonical ALC + TR models. With respect to stan-
dard ALC + TR models, in these models the rank of each
domain element is as low as possible (each domain element
is assumed to be as typical as possible). This is expressed by
the following definition.

Definition 4 (Minimal models of K (with respect to TBox))
Given M =〈∆, <, I〉 and M′ = 〈∆′, <′, I ′〉 , we say
that M is preferred to M′ (M < M′) if: ∆ = ∆′,
CI = CI

′
for all concepts C, for all x ∈ ∆, it holds that

kM(x) ≤ kM′(x) whereas there exists y ∈ ∆ such that
kM(y) < kM′(y).

Given a knowledge base K = 〈TBox,ABox〉, we say
thatM is a minimal model of K (with respect to TBox) if it
is a model satisfying K and there is noM′ model satisfying
K such thatM′ <M.

Furthermore, the models corresponding to rational closure
are canonical. This property, expressed by the following
definition, is needed when reasoning about the (relative) rank
of the concepts: it is important to have them all represented.

Definition 5 (Canonical model) Given K=(TBox,ABox),a
modelM =〈∆, <, I〉 satisfying K is canonical if for each
set of concepts {C1, C2, . . . , Cn}consistent with K, there
exists (at least) a domain element x ∈ ∆ such that x ∈
(C1 u C2 u · · · u Cn)I .

Definition 6 (Minimal canonical models (with respect to TBox))
M is a canonical model of K minimal with respect to
TBox if it satisfies K, it is minimal with respect to TBox
(Definition 4) and it is canonical (Definition 5).

The correspondence between minimal canonical models
and rational closure is established by the following key theo-
rem.

Theorem 1 ((Giordano et al. 2015)) Let K=(TBox,ABox)
be a knowledge base and C v D a query. We have that
C v D ∈ TBox if and only if C v D holds in all minimal
canonical models of K with respect to TBox (Definition 6).

Semantics with several preference relations
The main weakness of rational closure, despite its power and
its nice computational properties, is that it is an all-or-nothing
mechanism that does not allow to separately reason on single
aspects. To overcome this difficulty, we here consider models
with several preference relations, one for each aspect we want
to reason about. We assume this is any concept occurring
in K: we call LA the set of these aspects (observe that A
may be non-atomic). For each aspect A, <A expresses the
preference for aspect A : <Fly expresses the preference for
flying, so if we know that T(Bird) v Fly, birds that do
fly will be preferred to birds that do not fly, with respect to
aspect fly, i.e. with respect to <Fly . All these preferences, as
well as the global preference relation<, satisfy the properties
in Definition 7 below. We now enrich the definition of an
ALC + TR model given above (Definition 1) by taking into
account preferences with respect to all of the aspects. In the
semantics we can express that for instance x <Ai

y, whereas
y <Aj

x (x is preferred to y for aspect Ai but y is preferred
to x for aspect Aj).

This semantic richness allows to obtain a strengthening
of rational closure in which typicality with respect to every
aspect is maximized. Since we want to compare our approach
to rational closure, we keep the language the same than in
ALC + TR. In particular, we only have one single typicality
operator T. However, the semantic richness could motivate
the introduction of several typicality operators TA1

. . .TAn

by which one might want to explicitly talk in the language
about the typicality w.r.t. aspect A1, or A2, and so on. We
leave this extension for future work.

Definition 7 (Enriched rational models) Given a knowl-
edge base K, we call an enriched rational model a structure
M = 〈∆, <,<A1

, . . . , <An
, I〉, where ∆, I are defined as

in Definition 1, and <,<A1
, . . . , <An

are preference rela-
tions over ∆, with the properties of being irreflexive, tran-
sitive, satisfying the finite chain condition, modular (for all
x, y, z ∈ ∆, if x <Ai y then either x <Ai z or z <Ai y).

For all <Ai
and for < it holds that min<Ai

(S) = {x ∈ S
s.t. there is no x1 ∈ S s.t. x1 <Ai

x} and min<(S) =

49

{x ∈ S s.t. there is no x1 ∈ S s.t. x1 < x} and (T(C))I =
min<(CI).
< satisfies the further conditions that x < y if:

(a) there is Ai such that x <Ai
y, and there is no Aj such

that y <Aj
x or;

(b) there is T(Ci) v Ai ∈ K s.t. y ∈ (Ci u ¬Ai)I , and
for all T(Cj) v Aj ∈ K s.t. x ∈ (Cj u ¬Aj)I , there is
T(Ck) v Ak ∈ K s.t. y ∈ (Ck u ¬Ak)I and kM(Cj) <
kM(Ck).

In this semantics the global preference relation< is related
to the various preference relations <Ai

relative to single as-
pects Ai. Given (a) x < y when x is preferred to y for a
single aspect Ai, and there is no aspect Aj for which y is pre-
ferred to x. (b) captures the idea that in case two individuals
are preferred with respect to different aspects, preference (for
the global preference relation) is given to the individual that
satisfies all typical properties of the most specific concept (if
Ck is more specific than Cj , then kM(Cj) < kM(Ck)), as
illustrated by Example 1 below.

We insist in highlighting that this semantics somewhat
complicated is needed since we want to provide a strength-
ening of rational closure. For this, we have to respect the
constraints imposed by rational closure. One might think in
the future to study a semantics in which only (a) holds.We
have not considered such a simpler semantics since it would
no longer be a strengthening of the semantics corresponding
to rational closure, and is therefore out of the focus of this
work.

In order to be a model of K an ALCRTE model must
satisfy the following constraints.
Definition 8 (Enriched rational models of K) Given a
knowledge base K, and an enriched rational model for K
M = 〈∆, <,<A1 , . . . , <An , I〉, M is a model of K if it
satisfies both its TBox and its ABox, whereM satisfies TBox
if for all inclusions C v Ai ∈ TBox: if T does not occur in
C, then CI ⊆ Ai

I if T occurs in C, and C is T(C ′), then
both (i) min<(C ′I) ⊆ AiI and (ii) min<Ai

(C ′I) ⊆ AiI .
M satisfies ABox if (i) for all C(a) in ABox, aI ∈ CI , (ii)
for all aRb in ABox, (aI , bI) ∈ RI

Example 1 Let K = {Penguin v Bird,T(Bird) v
HasNiceFeather, T(Bird) v Fly, T(Penguin) v ¬Fly}.
LA = {HasNiceFeather, F ly,¬Fly,Bird, Penguin}. We
consider an ALCRTE modelM of K, that we don’t fully
describe but which we only use to observe the behavior of
two Penguins x, y with respect to the properties of (not) flying
and having nice feather. In particular, let us consider the
three preference relations: <,<¬Fly, <HasNiceFeather.

Suppose x <¬Fly y (because x, as all typical penguins,
does not fly whereas y exceptionally does) and there is no
other aspect Ai such that y <Ai x, and in particular it does
not hold that y <HasNiceFeather x (because for instance
both have a nice feather). In this case, obviously it holds that
x < y (since (a) is satisfied).

Consider now a more tricky situation in which again
x <¬Fly y holds (because for instance x does not fly whereas
y flies), (x is a typical penguin for what concerns Flying) but
this time y <HasNiceFeather x holds (because for instance

y has a nice feather, whereas x has not). So x is preferred to
y for a given aspect whereas y is preferred to x for another
aspect. However, x enjoys the typical properties of penguins,
and violates the typical properties of birds, whereas y enjoys
the typical properties of birds and violates those of penguins.
Being concept Penguin more specific than concept Bird, we
prefer x to y, since we prefer the individuals that inherit the
properties of the most specific concepts of which they are
instances. This is exactly what we get: by (b) x < y holds.

Logical entailment forALCRTE is defined as usual: a query
(with form CL(a) or CL v CR) is logically entailed by K if
it holds in all models of K, as stated by the following defi-
nition. The following theorem shows the relations between
ALCRTE and ALC + TR. Proofs are omitted due to space
limitations.

Theorem 2 If K |=ALC+TR F then also K |=ALCRTE
F .

If T does not occur in F the other direction also holds: If
K |=ALCRTE

F then also K |=ALC+TR F .

The following example shows that ALCRTE alone is not
strong enough, and this motivates the minimal models’ mech-
anism that we introduce in the next section. In the example
we show that ALCRTE alone does not allow us to perform
the stronger inferences with respect to rational closure men-
tioned in the Introduction (and in particular, it does not allow
to infer (**), that typical penguins have a nice feather).

Example 2 Consider the above Example 1. As said in the
Introduction, in rational closure we are not able to reason
separately about the property of flying or not flying, and the
property of having or not having a nice feather. Since pen-
guins are exceptional birds with respect to the property of
flying, in rational closure which is an all-or-nothing mech-
anism, they do not inherit any of the properties of typical
birds. In particular, they do not inherit the property of having
a nice feather, even if this property and the fact of flying are
independent from each other and there is no reason why be-
ing exceptional with respect to one property should block the
inheritance of the other one. Does our enriched semantics
enforce the separate inheritance of independent properties?

Consider a model M in which we have ∆ =
{x, y, z}, where x is a bird (not a penguin) that flies
and has a nice feather (x ∈ BirdI , x ∈ FlyI , x ∈
HasNiceFeatherI , x 6∈ PenguinI), y is a penguin that
does not fly and has a nice feather (y ∈ PenguinI , y ∈
BirdI , y 6∈ FlyI , y ∈ HasNiceFeatherI), z is a penguin
that does not fly and has no nice feather (z ∈ PenguinI , z ∈
BirdI , z 6∈ FlyI , z 6∈ HasNiceFeatherI). Suppose it
holds that x <Fly y, x <Fly z, x <HasNiceFeather z,
y <HasNiceFeather z, and x < y, x < z, y < z. It
can be verified that this is an ALCRTE model, satisfying
T(Penguin) v HasNiceFeather (since the only typical
Penguin is y, instance of HasNiceFeather).

Unfortunately, this is not the only ALCRTE model of K.
For instance there can beM′ equal toM except from the
fact that y <HasNiceFeather z does not hold, nor y < z
holds. It can be easily verified that this is also an ALCRTE

model of K in which T(Penguin) v HasNiceFeather

50 a strengthening of rational closure in dls : reasoning about multiple aspects

does not hold (since now also z is a typical Penguin, and z is
not an instance of HasNiceFeather).

This example shows that although there are ALCRTE

models satisfying well suited inclusions, the logic is not
strong enough to limit our attention to these models. We
would like to constrain our logic in order to exclude models
likeM′. Roughly speaking, we want to eliminateM′ be-
cause it is not minimal: although the model as it is satisfies
K, so y does not need to be preferred to z to satisfy K (nei-
ther with respect to < nor with respect to <HasNiceFeather),
intuitively we would like to prefer y to z (with respect to the
property HasNiceFeather, whence in this case with respect to
the global <), since y does not falsify any of the inclusions
with HasNiceFeather, whereas z does. This is obtained by
imposing the constraint of considering only models minimal
with respect to all relations <A, defined as in Definition 10
below. Notice that the wanted inference does not hold in
ALC + TR minimal canonical models corresponding to ra-
tional closure: in these models y < z does never hold (the
two elements have the same rank) and this semantics does
not allow us to prefer y to z. By adopting the restriction
to minimal canonical models, we obtain a semantics which
is stronger than rational closure (and therefore enforces all
conclusions enforced by rational closure) and, furthermore,
separately allows to reason on different aspects.

Before we end the section, similarly to what done above,
let us introduce a rank of a domain element with respect to
an aspect. We will use this notion in the following section.

Definition 9 The rank kAiM(x) of a domain element x with
respect to<Ai

inM is the length of the longest chain x0 <Ai

· · · <Ai
x from x to a minimal x0 (s.t. for no x′ x′ <Ai

x0). To refer to the rank of an element x with respect to the
preference relation < we will simply write kM(x).

The notion just introduced will be useful in the follow-
ing. Since kAiM and <Ai

are clearly interdefinable (by
the previous definition and by the properties of <Ai

it eas-
ily follows that in all enriched models M, x <Ai y iff
kAiM(x) < kAiM(y), and x < y iff kM(x) < kM(y)),
we will shift from one to other whenever this simplifies the
exposition.

Nonmonotonicity and relation with rational
closure

We here define a minimal models mechanism starting from
the enriched models of the previous section. With respect to
the minimal canonical models used in (Giordano et al. 2015)
we define minimal models by separately minimizing all the
preference relations with respect to all aspects (steps (i) and
(ii) in the definition below), before minimizing < (steps (iii)
and (iv) in the definition below). By the constraints linking
< to the preference relations <A1 · · · <An , this leads to
preferring (with respect to the global <) the individuals that
are minimal with respect to all <Ai

for all aspects Ai, or to
aspects of most specific categories than of more general ones.
It turns out that this leads to a stronger semantics than what
is obtained by directly minimizing <.

Definition 10 (Minimal Enriched Models) Given two
ALCRTE enriched modelsM = 〈∆, <A1 , . . . , <An , <, I〉
and M′ = 〈∆′, <′A1

, . . . , <′An
, <′, I ′〉 we say that M′ is

preferred toM with respect to the single aspects (and write
M′ <EnrichedAspectsM) if ∆ = ∆′, I = I ′, and:

• (i) for all x ∈ ∆, for all Ai: kAiM′ (x) ≤ kAiM(x);
• (ii) for some y ∈ ∆, for some Aj , kAjM′ (y) < kAjM

(y)

We let the set MinAspects = {M : there is noM′ such that
M′ <EnrichedAspectsM}.
GivenM andM′ ∈MinAspects, we say thatM′ is overall
preferred to M (and write M′ <Enriched M) if∆ = ∆′,
I = I ′, and:

• (iii) for all x ∈ ∆, kM′(x) ≤ kM(x);
• (iv) for some y ∈ ∆ , kM′(y) < kM(y)

We callM a minimal enriched model of K if it is a model
of K and there is noM′ model of K such thatM′ <Enriched

M.

K minimally entails a query F if F holds in all minimal
ALCRTE models of K. We write K |=ALCRTEmin

F . We
have developed the semantics above in order to overcome
a weakness of rational closure, namely its all-or-nothing
character. In order to show that the semantics hits the point,
we show here that the semantics is stronger than the one
corresponding to rational closure. Furthermore, Example
3 below shows that indeed we have strengthened rational
closure by making it possible to separately reason on the
different properties. Since the semantic characterization of
rational closure is given in terms of rational canonical models,
here we restrict our attention to enriched rational models
which are canonical.

Definition 11 (Minimal canonical enriched models of K)
An ALCRTE enriched model M is a minimal canoni-
cal enriched model of K if it satisfies K, it is mini-
mal (with respect to Definition 10) and it is canoni-
cal: for all the sets of concepts {C1, C2, . . . , Cn} s.t.
K 6|=ALCRTE

C1uC2u· · ·uCn v ⊥, there exists (at least)
a domain element x such that x ∈ (C1 u C2 u · · · u Cn)I .

We call ALCRTE + min− canonical the semantics ob-
tained by restricting attention to minimal canonical enriched
models. In the following we will write:
K |=ALCRTE+min−canonical C v D to mean that C v D
holds in all minimal canonical enriched models of K. The
following example shows that this semantics allows us to
correctly deal with the wanted inferences of the Introduc-
tion, as (**). The fact that the semantics ALCRTE +
min− canonical is a genuine strengthening of the seman-
tics corresponding to rational closure is formally shown in
Theorem 3 below.

Example 3 Consider any minimal canonical model M∗
of the same K used in Example 1.It can be easily ver-
ified that in M∗ there is a domain element y which
is a penguin that does not fly and has a nice feather
(y ∈ PenguinI , y ∈ BirdI , y ∈ HasNiceFeatherI).
First, it can be verified that y ∈ min<(PenguinI)
(by Definition 7, and since by minimality of <Fly and

51

<HasNiceFeather, y ∈ min<Fly
(PenguinI) and y ∈

min<HasNiceFeather
(PenguinI)). Furthermore, for all pen-

guin z that has not a nice feather, y < z (again by Definition
7, and since by minimality of <Fly and <HasNiceFeather,
y <HasNiceFeather z). From this, in all minimal canoni-
cal ALCRTE models of K it holds that T(Penguin) v
HasNiceFeather, i.e., K |=ALCRTE+min−canonical
T(Penguin) v HasNiceFeather, which was the wanted
inference (**) of the Introduction.

The following theorem is the important technical re-
sult of the paper:

Theorem 3 The minimal models semantics ALCRTE +
min− canonical is stronger than the semantics for ratio-
nal closure. Let (K = TBox,ABox). If C v D ∈ TBox
then K|=ALCRTE+min−canonicalC v D.

Proof.(Sketch) By contraposition suppose that
K 6|=ALCRTE+min−canonical C v D. Then there
is a minimal canonical enriched ALCRTE model
M = 〈∆, <A1

, . . . , <An
, <, I〉 of K and an y ∈ CI such

that y 6∈ DI . All consistent sets of concepts consistent with
K w.r.t. ALCRTE are also consistent with K with respect
to ALC + TR, and viceversa (by Theorem 2).By definition
of canonical, there is also a canonical ALC + TR model
of K MRC = 〈∆, <R C, I〉 be this model. If C does not
contain the T operator, we are done: in MRC , as in M,
there is y ∈ CI such that y 6∈ DI , hence C v D does not
hold inMRC , and C v D 6∈ TBox. If T occurs in C, and
C = T(C ′), we still need to show that also inMRC , as in
M, y ∈ min<RC

(C ′I). We prove this by showing that for
all x, y ∈ ∆ if x <RC y inMRC , then also x < y inM.
The proof is by induction on kMRC

(x).
(a): let kMRC

(x) = 0 and kMRC
(y) > 0. Since x does

not violate any inclusion, also inM (by minimality ofM)
for all preference relations <Aj kAjM

(x) = 0, and also
kM(x) = 0. This cannot hold for y, for which kM(y) >
0 (otherwise M would violate K, against the hypothesis).
Hence x < y inM.

(b): let kMRC
(x) = i < kMRC

(y), i.e. x <RC y. As
x <RC y inMRC and the rank of x inMRC is i, there must
be a T(Bi) v Ai ∈ Ei − Ei+1 such that x ∈ (¬Bi t Ai)I
whereas y ∈ (Bi u ¬Ai)I in MRC . Before we proceed
let us notice that by definition of Ei, as well as by what
stated just above on the relation between rank of a concept
and kMRC

, kMRC
(Bi) = kMRC

(x) . We will use this fact
below. We show that, for any inclusion T(Bl) v Al ∈ K
that is violated by x, it holds that kM(Bl) < kM(Bi), so
that, by (b), x < y.

Let T(Bl) v Al ∈ K violated by x, i.e. such that x ∈
(Bl u¬Al)I . SinceMRC satisfies K, there must be x′ <RC
x inMRC with x′ ∈ (Bl)

I . As kMRC
(x′) < i, by inductive

hypothesis, x′ < x inM. As x′ ∈ BlI , kM(Bl) ≤ kM(x′).
Since it can be shown that kM(x′) < kM(Bi), kM(Bl) <
kM(Bi), and by condition (b), it holds that x < y inM.

With these facts, since y ∈ min<(C ′I) holds inM, also
y ∈ min<RC

(C ′I) in MRC , hence T(C ′) v D does not
hold inMRC , and C v D = T(C ′) v D 6∈ TBox.

The theorem follows by contraposition.

Conclusions and Related Works
A lot of work has been done in order to extend the basic
formalism of Description Logics (DLs) with nonmonotonic
reasoning features (Straccia 1993; Baader and Hollunder
1995; Donini, Nardi, and Rosati 2002; Eiter et al. 2004;
Giordano et al. 2007; 2013a; Ke and Sattler 2008; Britz,
Heidema, and Meyer 2008; Bonatti, Lutz, and Wolter 2009;
Casini and Straccia 2010; Motik and Rosati 2010; Krisnadhi,
Sengupta, and Hitzler 2011; Knorr, Hitzler, and Maier 2012;
Casini et al. 2013). The purpose of these extensions is to
allow reasoning about prototypical properties of individuals
or classes of individuals.

The interest of rational closure for DLs is that it provides
a significant and reasonable skeptical nonmonotonic infer-
ence mechanism, while keeping the same complexity as the
underlying logic. The first notion of rational closure for
DLs was defined by Casini and Straccia (Casini and Strac-
cia 2010). Their rational closure construction for ALC di-
rectly uses entailment in ALC over a materialization of the
KB. A variant of this notion of rational closure has been
studied in (Casini et al. 2013), and a semantic characteri-
zation for it has been proposed. In (Giordano et al. 2013b;
2015) a notion of rational closure for the logicALC has been
proposed, building on the notion of rational closure proposed
by Lehmann and Magidor (Lehmann and Magidor 1992),
together with a minimal model semantics characterization.

It is well known that rational closure has some weak-
nesses that accompany its well-known qualities, both in
the context of propositional logic and in the context of
Description Logics. Among the weaknesses is the fact
that one cannot separately reason property by property, so
that, if a subclass of C is exceptional for a given aspect,
it is exceptional “tout court” and does not inherit any of
the typical properties of C. Among the strengths of ra-
tional closure there is its computational lightness, which
is crucial in Description Logics. To overcome the limi-
tations of rational closure, in (Casini and Straccia 2011;
2013) an approach is introduced based on the combination of
rational closure and Defeasible Inheritance Networks, while
in (Casini and Straccia 2012) a lexicographic closure is pro-
posed, and in (Casini et al. 2014) relevant closure, a syntactic
stronger version of rational closure.To address the mentioned
weakness of rational closure, in this paper we have proposed
a finer grained semantics of the semantics for rational clo-
sure proposed in (Giordano et al. 2015), where models are
equipped with several preference relations. In such a seman-
tics it is possible to relativize the notion of typicality, whence
to reason about typical properties independently from each
other. We are currently working at the formulation of a
syntactic characterization of the semantics which will be
a strengthening of rational closure. As the semantics we
have proposed provides a strengthening of rational closure,
a natural question arises whether this semantics is equiv-
alent to the lexicographic closure proposed in (Lehmann
1995). In particular, lexicographic closure construction for
the description logic ALC has been defined in (Casini and

52 a strengthening of rational closure in dls : reasoning about multiple aspects

Straccia 2012). Concerning our Example 3 above, our mini-
mal model semantics gives the same results as lexicographic
closure, since T(Penguin) v HasNiceFeather can be
derived from the lexicographic closure of the TBox and
T(Penguin) v HasNiceFeather holds in all the mini-
mal canonical enriched models of TBox. However, a general
relation needs to be established.

An approach related to our approach is given in (Gil 2014),
where it is proposed an extension of ALC + T with several
typicality operators, each corresponding to a preference rela-
tion. This approach is related to ours although different: the
language in (Gil 2014) allows for several typicality operators
whereas we only have a single typicality operator. The focus
of (Gil 2014) is indeed different from ours, as it does not deal
with rational closure, whereas this is the main contribution
of our paper.

Acknowledgement: This research is partially supported
by INDAM-GNCS Project 2016 ”Ragionamento Defeasible
nelle Logiche Descrittive”.

References
Baader, F., and Hollunder, B. 1995. Priorities on defaults
with prerequisites, and their application in treating speci-
ficity in terminological default logic. Journal of Automated
Reasoning (JAR) 15(1):41–68.
Bonatti, P. A.; Lutz, C.; and Wolter, F. 2009. The Complexity
of Circumscription in DLs. Journal of Artificial Intelligence
Research (JAIR) 35:717–773.
Britz, K.; Heidema, J.; and Meyer, T. 2008. Semantic
preferential subsumption. In Brewka, G., and Lang, J., eds.,
Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the 11th International Conference (KR 2008),
476–484. Sidney, Australia: AAAI Press.
Casini, G., and Straccia, U. 2010. Rational Closure for
Defeasible Description Logics. In Janhunen, T., and Niemelä,
I., eds., Proceedings of the 12th European Conference on
Logics in Artificial Intelligence (JELIA 2010), volume 6341
of Lecture Notes in Artificial Intelligence, 77–90. Helsinki,
Finland: Springer.
Casini, G., and Straccia, U. 2011. Defeasible Inheritance-
Based Description Logics. In Walsh, T., ed., Proceedings of
the 22nd International Joint Conference on Artificial Intel-
ligence (IJCAI 2011), 813–818. Barcelona, Spain: Morgan
Kaufmann.
Casini, G., and Straccia, U. 2012. Lexicographic Closure
for Defeasible Description Logics. In Proc. of Australasian
Ontology Workshop, vol.969, 28–39.
Casini, G., and Straccia, U. 2013. Defeasible inheritance-
based description logics. Journal of Artificial Intelligence
Research (JAIR) 48:415–473.
Casini, G.; Meyer, T.; Varzinczak, I. J.; ; and Moodley, K.
2013. Nonmonotonic Reasoning in Description Logics: Ra-
tional Closure for the ABox. In DL 2013, 26th International
Workshop on Description Logics, volume 1014 of CEUR
Workshop Proceedings, 600–615. CEUR-WS.org.
Casini, G.; Meyer, T.; Moodley, K.; and Nortje, R. 2014.

Relevant closure: A new form of defeasible reasoning for
description logics. In JELIA 2014, 92–106.
Donini, F. M.; Nardi, D.; and Rosati, R. 2002. Description
logics of minimal knowledge and negation as failure. ACM
Transactions on Computational Logic (ToCL) 3(2):177–225.
Eiter, T.; Lukasiewicz, T.; Schindlauer, R.; and Tompits, H.
2004. Combining Answer Set Programming with Descrip-
tion Logics for the Semantic Web. In Dubois, D.; Welty, C.;
and Williams, M., eds., Principles of Knowledge Represen-
tation and Reasoning: Proceedings of the 9th International
Conference (KR 2004), 141–151. Whistler, Canada: AAAI
Press.
Gil, O. F. 2014. On the non-monotonic description logic
alc+tmin. CoRR abs/1404.6566.
Giordano, L.; Gliozzi, V.; Olivetti, N.; and Pozzato, G. L.
2007. Preferential Description Logics. In Dershowitz, N.,
and Voronkov, A., eds., Proceedings of LPAR 2007 (14th
Conference on Logic for Programming, Artificial Intelligence,
and Reasoning), volume 4790 of LNAI, 257–272. Yerevan,
Armenia: Springer-Verlag.
Giordano, L.; Gliozzi, V.; Olivetti, N.; and Pozzato, G. L.
2009. ALC+T: a preferential extension of Description Logics.
Fundamenta Informaticae 96:1–32.
Giordano, L.; Gliozzi, V.; Olivetti, N.; and Pozzato, G. L.
2013a. A NonMonotonic Description Logic for Reasoning
About Typicality. Artificial Intelligence 195:165–202.
Giordano, L.; Gliozzi, V.; Olivetti, N.; and Pozzato, G. L.
2013b. Minimal Model Semantics and Rational Closure
in Description Logics . In 26th International Workshop on
Description Logics (DL 2013), volume 1014, 168 – 180.
Giordano, L.; Gliozzi, V.; Olivetti, N.; and Pozzato, G. L.
2015. Semantic characterization of rational closure: From
propositional logic to description logics. Artificial Intelli-
gence 226:1–33.
Ke, P., and Sattler, U. 2008. Next Steps for Description
Logics of Minimal Knowledge and Negation as Failure. In
Baader, F.; Lutz, C.; and Motik, B., eds., Proceedings of
Description Logics, volume 353 of CEUR Workshop Pro-
ceedings. Dresden, Germany: CEUR-WS.org.
Knorr, M.; Hitzler, P.; and Maier, F. 2012. Reconciling owl
and non-monotonic rules for the semantic web. In ECAI
2012, 474479.
Kraus, S.; Lehmann, D.; and Magidor, M. 1990. Nonmono-
tonic reasoning, preferential models and cumulative logics.
Artificial Intelligence 44(1-2):167–207.
Krisnadhi, A. A.; Sengupta, K.; and Hitzler, P. 2011. Local
closed world semantics: Keep it simple, stupid! In Proceed-
ings of Description Logics, volume 745 of CEUR Workshop
Proceedings.
Lehmann, D., and Magidor, M. 1992. What does a condi-
tional knowledge base entail? Artificial Intelligence 55(1):1–
60.
Lehmann, D. J. 1995. Another perspective on default reason-
ing. Ann. Math. Artif. Intell. 15(1):61–82.
Motik, B., and Rosati, R. 2010. Reconciling Description
Logics and rules. Journal of the ACM 57(5).

53

Straccia, U. 1993. Default inheritance reasoning in hybrid
kl-one-style logics. In Bajcsy, R., ed., Proceedings of the
13th International Joint Conference on Artificial Intelligence
(IJCAI 1993), 676–681. Chambéry, France: Morgan Kauf-
mann.

54 a strengthening of rational closure in dls : reasoning about multiple aspects

Distributing Knowledge into Simple Bases

Adrian Haret and Jean-Guy Mailly and Stefan Woltran
Institute of Information Systems

TU Wien, Austria
{haret,jmailly,woltran}@dbai.tuwien.ac.at

Abstract

Understanding the behavior of belief change operators
for fragments of classical logic has received increas-
ing interest over the last years. Results in this direc-
tion are mainly concerned with adapting representation
theorems. However, fragment-driven belief change also
leads to novel research questions. In this paper we pro-
pose the concept of belief distribution, which can be un-
derstood as the reverse task of merging. More specifi-
cally, we are interested in the following question: given
an arbitrary knowledge base K and some merging op-
erator ∆, can we find a profile E and a constraint µ,
both from a given fragment of classical logic, such that
∆µ(E) yields a result equivalent to K? In other words,
we are interested in seeing if K can be distributed into
knowledge bases of simpler structure, such that the task
of merging allows for a reconstruction of the original
knowledge. Our initial results show that merging based
on drastic distance allows for an easy distribution of
knowledge, while the power of distribution for opera-
tors based on Hamming distance relies heavily on the
fragment of choice.

Introduction
Belief change and belief merging have been topics of inter-
est in Artificial Intelligence for three decades (Alchourrón,
Gärdenfors, and Makinson 1985; Katsuno and Mendelzon
1991; Konieczny and Pino Pérez 2002). However, the re-
striction of such operators to specific fragments of propo-
sitional logic has received increasing attention only in the
last years (Delgrande et al. 2013; Creignou et al. 2014a;
2014b; Zhuang and Pagnucco 2012; Zhuang, Pagnucco, and
Zhang 2013; Zhuang and Pagnucco 2014; Delgrande and
Peppas 2015; Haret, Rümmele, and Woltran 2015). Mostly,
the question tackled in these works is “How should rational-
ity postulates and change operators be adapted to ensure that
the result of belief change belongs to a given fragment?”.
Surprisingly, the question concerning the extent to which the
result of a belief change operation can deviate from the frag-
ment under consideration has been neglected so far. In order
to tackle this question, we focus here on a certain form of
reverse merging. The question is, given an arbitrary knowl-

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

edge base K and some IC-merging (i.e. merging with in-
tegrity constraint, see (Konieczny and Pino Pérez 2002)),
operator ∆ can we find a profile E, i.e. a tuple of knowl-
edge bases, and a constraint µ, both from a given fragment
of classical logic, such that ∆µ(E) yields a result equivalent
toK? In other words, we are interested in seeing ifK can be
distributed into knowledge bases of simpler structure, such
that the task of merging allows for a reconstruction of the
original knowledge. We call this operation knowledge dis-
tribution.

Studying the concept of knowledge distribution can be
motivated from different points of view. First, consider a
scenario where the storage devices have limited expressibil-
ity, for instance, databases or logic programs. Our analysis
will show which merging operators are required to recon-
struct arbitrary knowledge stored in such a set of limited de-
vices. Second, distribution can also be understood as a tool
to hide information; only users who know the used merging
operator (which thus acts as an encryption key) are able to
faithfully retrieve the distributed knowledge. Given the high
complexity of belief change (even for revision in “simple”
fragments like Horn and 2CNF (Eiter and Gottlob 1992;
Liberatore and Schaerf 2001; Creignou, Pichler, and Woltran
2013)), brute-force attack to guess the merging operator is
unthinkable. Finally, from the theoretical perspective our re-
sults shed light on the power of different merging operators
when applied to profiles from certain fragments. In partic-
ular, our results show that merging 1CNF formulas via the
Hamming-distance based operator ∆H,Σ does not need ad-
ditional care, since the result is guaranteed to stay in the
fragment.

Related Work. Previous work on merging in fragments
of propositional logic proposed an adaptation of existing
belief merging operators to ensure that the result of merg-
ing belongs to a given fragment (Creignou et al. 2014b), or
modified the rationality postulates in order to function in
the Horn fragment (Haret, Rümmele, and Woltran 2015).
Our approach is different, since we do not require that the
result of merging stays in a given fragment. On the con-
trary, we want to decompose arbitrary bases into a fragment-
profile. Recent work by Liberatore has also addressed a form
of meta-reasoning over belief change operators. In (Libera-
tore 2015a), the input is a profile of knowledge bases with

55

the expected result of merging R, and the aim is to deter-
mine the reliability of the bases (for instance, represented
by weights) which allow the obtaining of R. In another pa-
per, Liberatore (2015b) identifies, given a sequence of be-
lief revisions and their results, the initial pre-order which
characterizes the revision operator. Finally, even if our ap-
proach may seem related to Knowledge Compilation (KC)
(Darwiche and Marquis 2002; Fargier and Marquis 2014;
Marquis 2015), both methods are in fact conceptually dif-
ferent. KC aims at modifying a knowledge base K into a
knowledge base K ′ such that the most important queries
for a given application (consistency checking, clausal en-
tailment, model counting, . . .) are simpler to solve with K ′.
Here, we are interested in the extent to which it is possible to
equivalently represent an arbitrary knowledge base by sim-
pler fragments when using merging as a recovery operation.

Main Contributions. We formally introduce the concept
of knowledge distributability, as well as a restricted ver-
sion of it where the profile is limited to a single knowledge
base (simplifiability). We show that for drastic distance ar-
bitrary knowledge can be distributed into bases restricted to
mostly any kind of fragment, while simplifiability is limited
to trivial cases. On the other hand, for Hamming-distance
based merging the picture is more opaque. We show that
for 1CNF , distributability w.r.t. ∆H,Σ is limited to trivial
cases, while slightly more can be done with ∆H,GMin and
∆H,GMax . For 2CNF we show that arbitrary knowledge can
be distributed and even be simplified. Finally, we discuss the
Horn fragment for which the results for ∆H,Σ, ∆H,GMin

and ∆H,GMax are situated in between the two former frag-
ments.

Background
Fragments of Propositional Logic. We consider L as the
language of propositional logic over some fixed alphabet U
of propositional atoms. We use standard connectives ∨, ∧,
¬, and constants >, ⊥. A clause is a disjunction of literals.
A clause is called Horn if at most one of its literals is pos-
itive. An interpretation is a set of atoms (those set to true).
The set of all interpretations is 2U . Models of a formula ϕ
are denoted by Mod(ϕ). A knowledge base (KB) is a fi-
nite set of formulas and we identify models of a KB K via
Mod(K) =

⋂
ϕ∈K Mod(ϕ). A profile is a finite non-empty

tuple of KBs. Two formulae ϕ1, ϕ2 (resp. KBs K1,K2) are
equivalent, denoted ϕ1 ≡ ϕ2 (resp. K1 ≡ K2), when they
have the same set of models.

We use a rather general and abstract notion of fragments.

Definition 1. A mapping Cl : 22U −→ 22U
is

called closure-operator if it satisfies the following for any
M,N ⊆ 2U :
• IfM⊆ N , then Cl(M) ⊆ Cl(N)

• If |M| = 1, then Cl(M) =M
• Cl(∅) = ∅.
Definition 2. L′ ⊆ L is called a fragment if it is closed
under conjunction (i.e., ϕ ∧ ψ ∈ L′ for any ϕ,ψ ∈ L′),
and there exists an associated closure-operator Cl such that

(1) for all ψ ∈ L′, Mod(ψ) = Cl(Mod(ψ)) and (2) for all
M⊆ 2U there is a ψ ∈ L′ with Mod(ψ) = Cl(M). We of-
ten denote the closure-operator Cl associated to a fragment
L′ as ClL′ .
Definition 3. For a fragment L′, we call a finite set K ⊆ L′
an L′-knowledge base. An L′-profile is a profile over L′-
knowledge bases. A KB K ′ ⊆ L is called L′-expressible if
there exists an L′-KB K, such that K ′ ≡ K.

Many well known fragments of propositional logic are in-
deed captured by our notion. For the Horn-fragment LHorn ,
i.e. the set of all conjunctions of Horn clauses over U , take
the operator ClLHorn

defined as the fixed point of the func-
tion

Cl1LHorn
(M) = {ω1 ∩ ω2 | ω1, ω2 ∈M}.

The fragment L2CNF which is restricted to formulas over
clauses of length at most 2 is linked to the operator ClL2CNF

defined as the fixed point of the function Cl1L2CNF
given by

Cl1L2CNF
(M) = {maj3(ω1, ω2, ω3) | ω1, ω2, ω3 ∈M}.

Here, we use the ternary majority function maj3(ω1, ω2, ω3)
which yields an interpretation containing those atoms which
are true in at least two out of ω1, ω2, ω3. Finally, we are also
interested in the L1CNF fragment which is just composed
of conjunctions of literals; its associated operator ClL1CNF

is
defined as the fixed point of the function

Cl1L1CNF
(M) = {ω1 ∩ ω2, ω1 ∪ ω2 | ω1, ω2 ∈M} ∪

{ω3 | ω1 ⊆ ω3 ⊆ ω2;ω1, ω2 ∈M}.
Note that full classical logic is given via the identity closure
operator ClL(M) =M.

Merging Operators. We focus on IC-merging, where a
profile is mapped into a KB, such that the result satisfies
some integrity constraint. Postulates for IC-merging have
been stated in (Konieczny and Pino Pérez 2002). We re-
call a specific family of IC-merging operators, based on dis-
tances between interpretations, see also (Konieczny, Lang,
and Marquis 2004).
Definition 4. A distance between interpretations is a map-
ping d from two interpretations to a non-negative real num-
ber, such that for all ω1, ω2, ω3 ⊆ U , (1) d(ω1, ω2) = 0 iff
ω1 = ω2; (2) d(ω1, ω2) = d(ω2, ω1); and (3) d(ω1, ω2) +
d(ω2, ω3) ≥ d(ω1, ω3). We will use two specific distances:
drastic distance D(ω1, ω2) = 1 if ω1 = ω2, 0 otherwise;
Hamming distance H(ω1, ω2) = |(ω1 \ ω2) ∪ (ω2 \ ω1)|.

We overload the previous notations to define the distance
between an interpretation ω and a KB K: if d is a distance
between interpretations, then

d(ω,K) = min
ω′∈Mod(K)

d(ω, ω′).

Next, an aggregation function must be used to evaluate the
distance between an interpretation and a profile.
Definition 5. An aggregation function ⊗ associates a non-
negative number to every finite tuple of non-negative num-
bers, such that:

56 reactive policies with planning for action languages

1. If x ≤ y, then ⊗(x1, . . . , x, . . . , xn) ≤
⊗(x1, . . . , y, . . . , xn);

2. ⊗(x1, . . . , xn) = 0 iff x1 = · · · = xn = 0;
3. For every non-negative number x, ⊗(x) = x.
As aggregation functions, we will consider the sum Σ,
and GMax and GMin1, defined as follows. Given a pro-
file (K1, . . . ,Kn), let Vω = (dω1 , . . . , d

ω
n) be the vec-

tor of distances s.t. dωi = d(ω,Ki). GMax (dω1 , . . . , d
ω
n)

(resp. GMin(dω1 , . . . , d
ω
n)) is defined by ordering Vω in

decreasing (resp. increasing) order. Given two interpreta-
tions ω1, ω2, GMax (dω1

1 , . . . , dω1
n) ≤ GMax (dω2

1 , . . . , dω2
n)

(resp. GMin(dω1
1 , . . . , dω1

n) ≤ GMin(dω2
1 , . . . , dω2

n)) is de-
fined by comparing them w.r.t. the lexicographic ordering.

Finally, let d be a distance, ω an interpretation and E =
(K1, . . . ,Kn) a profile. Then,

d⊗(ω,E) = ⊗(d(ω,K1), . . . , d(ω,Kn)).

If there is no ambiguity about the aggregation function ⊗,
we write d(ω,E) instead of d⊗(ω,E).
Definition 6. For any distance d between interpretations,
and any aggregation function ⊗, the merging operator ∆d,⊗

is a mapping from a profile E and a formula µ to a KB, such
that

Mod(∆d,⊗
µ (E)) = min(Mod(µ),≤d,⊗E),

with ω1 ≤d,⊗E ω2 iff d⊗(ω1, E) ≤ d⊗(ω2, E).
When we consider a profile containing a single knowledge

base K, all aggregation functions are equivalent; we write
∆d
µ(K) instead of ∆d,⊗

µ ((K)) for readability. For drastic
distance, GMin , GMax , and Σ are equivalent for arbitrary
profiles. Thus, whenever we show results for ∆D,Σ, these
carry over to ∆D,GMin and ∆D,GMax .

Main Concepts and General Results
We now give the central definition for a knowledge base be-
ing distributable into a profile from a certain fragment with
respect to a given merging operator.
Definition 7. Let ∆ be a merging operator, K ⊆ L be
an arbitrary KB, and L′ be a fragment. K is called L′-
distributable w.r.t. ∆ if there exists an L′-profile E and a
formula µ ∈ L′, such that ∆µ(E) ≡ K.
Example 1. Let U = {a, b} and consider K = {a ∨ b}
which we want to check for LHorn -distributability w.r.t. op-
erator ∆H,Σ. We have Mod(K) = {{a}, {b}, {a, b}}, thus
K is not LHorn -expressible (note that ClLHorn (Mod(K)) =
{∅, {a}, {b}, {a, b}} 6= Mod(K)), otherwise K would be
distributable in a simple way (see Proposition 1 below).

Take the LHorn -profile E = (K1,K2) with K1 = {a ∧
b}, K2 = {¬a ∨ ¬b}, together with the empty constraint

1GMax and GMin are also known as leximax and leximin
respectively. Stricto sensu, these functions return a vector of num-
bers, and not a single number. However, GMax (resp. GMin) can
be associated with an aggregation function as defined in Defini-
tion 5 which yields the same vector ordering than GMax (resp.
GMin). We do a slight abuse by using directly GMax and GMin
as the names of aggregation functions. See (Konieczny, Lang, and
Marquis 2002).

µ = a ∨ ¬a. We have Mod(K1) = {{a, b}}, Mod(K2) =
{{a}, {b}, ∅}. In the following matrix, each line corresponds
to the distance between a model of µ and a KB from the
profile E (columns K1 and K2), or between a model of µ
and the profile using the sum-aggregation over the distances
to the single KBs (column Σ).

K1 K2 Σ
{a, b} 0 1 1
{a} 1 0 1
{b} 1 0 1
∅ 2 0 2

We observe that Mod(∆H,Σ
µ (E)) = {{a}, {b}, {a, b}}, thus

∆H,Σ
µ (E) ≡ K as desired. It is easily checked that also other

aggregations work: ∆H,GMax
µ (E) ≡ ∆H,GMin

µ (E) ≡ K. �
Next, we recall that IC-merging of a single KB yields revi-

sion. Thus, the concept we introduce next is also of interest,
as it represents a certain form of reverse revision.

Definition 8. Let ∆ be a merging operator, K ⊆ L an ar-
bitrary KB, and L′ a fragment. K is called L′-simplifiable
w.r.t. ∆ if there exists an L′-KB K ′ and µ ∈ L′, such that
∆µ(K ′) ≡ K.

As we will see later, the KBK from Example 1 cannot be
LHorn -simplified w.r.t. ∆H ; in other words, we need here at
least two KBs to “express” K. However, it is rather straight-
forward that any L′-expressible KB can be L′-simplified.

Proposition 1. For every fragment L′ and every KB K,
it holds that K is L′-simplifiable (and thus also L′-
distributable) w.r.t. ∆, whenever K is L′-expressible.

Proof. Let K ′ be an L′-KB equivalent to K, and let µ =
(
∧
ϕ∈K′ ϕ). Thus, µ ∈ L′ by definition of fragments and it

is easily verified that ∆µ(K ′) ≡ K.

Next, we show that in order to determine whether a KB
K is L′-distributable, it is sufficient to consider constraints
µ such that Mod(µ) = ClL′(Mod(K)).

Proposition 2. Let K ∈ L be a KB, L′ be a fragment, E an
L′-profile and µ ∈ L′. Then ∆µ(E) ≡ K implies ∆µ′(E) ≡
K for any µ′ such that Mod(µ′) = ClL′(Mod(K)).

Proof. Let ∆ = ∆d,⊗. By Definition 6, Mod(K) =

min(Mod(µ),≤d,⊗E), hence Mod(K) ⊆ Mod(µ). More-
over, µ is L′-closed, so ClL′(Mod(K)) = Mod(µ′) ⊆
Mod(µ). We get Mod(K) ⊆ Mod(µ′) ⊆ Mod(µ). Thus,
Mod(K) = min(Mod(µ′),≤d,⊗E), i.e. ∆µ′(E) ≡ K.

Next, we give two positive results for distributing knowl-
edge in any fragment. The key idea is to use KBs in the
profile which have exactly one model (our notion of frag-
ment guarantees existence of such KBs). The first result is
independent of the distance notion but requires GMin as the
aggregation function. The second result is for drastic dis-
tance and thus works for any of the aggregation functions
we consider.

57

Theorem 3. Let d be a distance and L′ be a fragment. Then
for every KBK, such that for all distinct ω1, ω2 ∈ Mod(K),
d(ω1, ω2) = e for some e > 0, it holds that K is L′-
distributable w.r.t. ∆d,GMin .

Proof. Build the L′-profile E such that for each ω ∈
Mod(K), there is a KB with ω as its only model. Thus
all models of K get a GMin-vector (0, e, e, e, e, . . .).
All interpretations from ClL′(Mod(K)) \ Mod(K) get
a vector (f, g, . . .) with f > 0. Hence, we have
min(Mod(µ),≤d,GMin

E) = Mod(K) using µ ∈ L′ with
Mod(µ) = ClL′(Mod(K)).

Theorem 4. For every fragment L′ and every knowledge
base K, it holds that K is L′-distributable w.r.t. ∆D,⊕, for
⊕ ∈ {Σ,GMin,GMax}.

Proof. Given a fragment L′, we take E = {Kω | ω ∈
Mod(K)} where Kω ∈ L′ is a knowledge base with single
model ω (such Kω ∈ L′ exists due to our definition of frag-
ments), and let µ be such that Mod(µ) = ClL′(Mod(K));
hence also µ ∈ L′. Let ω′ ∈ Mod(µ) and n = |Mod(K)|,
we observe that ΣKω∈EH(ω′,Kω) = n − 1 when ω′ ∈
Mod(K), and n otherwise. Thus, ∆D,Σ

µ (E) ≡ K. The same
result holds for ∆D,GMax

µ and ∆D,GMin
µ .

Concerning simplifiability w.r.t. drastic distance based op-
erators, Proposition 1 cannot be improved.

Theorem 5. For every fragment L′ and every KB K, K is
L′-simplifiable w.r.t. ∆D iff K is L′-expressible.

Proof. The if-direction is by Proposition 1. For the other
direction, suppose K is not L′-expressible. We show that
for any L′-KB K ′, ∆D

µ (K ′) 6≡ K with µ = ClL′(K). By
Proposition 2 the result then follows. Now suppose there ex-
ists an L′-KB K ′ such that ∆D

µ (K ′) ≡ K. First observe
that since K is not L′-expressible, Mod(µ) ⊃ Mod(K).
Since we are working with drastic distance, in order to
promote models of K, we also need them in K ′, hence
Mod(K ′) ⊇ Mod(K) and since K ′ is from L′ we have
Mod(K ′) ⊇ ClL′(K) = Mod(µ). Thus there exists ω ∈
ClL′(Mod(K))\Mod(K) having distance 0 toK ′, and thus
ω ∈ ∆D

µ (K ′). Since ω /∈ Mod(K), this yields a contradic-
tion to ∆D

µ (K ′) ≡ K.

Hamming Distance and Specific Fragments
We first consider the simplest fragment under consideration,
namely conjunction of literals. As it turns out, (non-trivial)
distributability for this fragment w.r.t. ∆H,Σ is not achiev-
able. We then see that more general fragments allow for non-
trivial distributions. In particular, we show that every KB is
distributable (and even simplifiable) in the 2CNF case, and
we finally give a few observations for LHorn .

The 1CNF Fragment
The following technical result is important to prove the main
result in this section.

Lemma 6. For any L1CNF -profile E = (K1, . . . ,Kn) and
interpretations ω1, ω2, it holds that:

H(ω1, E) +H(ω2, E) = H(ω1 ∩ω2, E) +H(ω1 ∪ω2, E).

Proof. It suffices to show that for each Ki in profile E,
H(ω1,Ki) + H(ω2,Ki) = H(ω1 ∩ ω2,Ki) + H(ω1 ∪
ω2,Ki). Indeed, summing up these equalities over all Ki ∈
E, we get

ΣKi∈EH(ω1,Ki) + ΣKi∈EH(ω2,Ki) =

ΣKi∈EH(ω1 ∩ ω2,Ki) + ΣKi∈EH(ω1 ∪ ω2,Ki).

Since H(ω,E) = ΣKi∈EH(ω,Ki), for any interpretation
ω, our conclusion then follows immediately.

Thus, take ω′1, ω
′
2 to be two interpretations that are closest

to ω1 and ω2, respectively, among the models of Mod(Ki).
In other words, H(ω1, ω

′
1) = minω∈Mod(Ki)H(ω1, ω) and

H(ω2, ω
′
2) = minω∈Mod(Ki)H(ω2, ω). By induction on

the number of propositional atoms in L, we can show that
ω′1 ∩ ω′2 and ω′1 ∪ ω′2 are closest in Mod(Ki) to ω1 ∩ ω2

and ω1 ∪ ω2, respectively. Thus, we have that H(ω1,Ki) =
H(ω1, ω

′
1), H(ω2,Ki) = H(ω2, ω

′
2), H(ω1 ∩ ω2,Ki) =

H(ω1∩ω2, ω
′
1∩ω′2),H(ω1∪ω2,Ki) = H(ω1∪ω2, ω

′
1∪ω′2),

and our problem reduces to showing that H(ω1, ω
′
1) +

H(ω2, ω
′
2) = H(ω1 ∩ω2, ω

′
1 ∩ω′2) +H(ω1 ∪ω2, ω

′
1 ∪ω′2).

By using induction on the number of propositional atoms in
L again, we can show that this equality holds. The argument
runs as follows: in the base case, when the alphabet consists
of just one propositional atom, the equality is shown to be
true by checking all the cases. For the inductive step we as-
sume the claim holds for an alphabet of size n and show that
it also holds for an alphabet of size n+ 1. More concretely,
we analyze the way in which the Hamming distances be-
tween interpretations change when we add a propositional
atom to the alphabet. An analysis of all the possible cases
shows that the equality holds.

Next we observe certain patterns of interpretations that
indicate whether a KB is L1CNF -expressible or not.

Definition 9. If K is a knowledge base, then a pair of inter-
pretations ω1 and ω2 are called critical with respect to K if
ω1 * ω2 and ω2 * ω1, and one of the following cases holds:

1. ω1, ω2 ∈ Mod(K) and ω1 ∩ ω2, ω1 ∪ ω2 /∈ Mod(K),
2. ω1, ω2, ω1 ∩ ω2 ∈ Mod(K) and ω1 ∪ ω2 /∈ Mod(K),
3. ω1, ω2, ω1 ∪ ω2 ∈ Mod(K) and ω1 ∩ ω2 /∈ Mod(K),
4. ω1 ∩ ω2, ω1 ∪ ω2 ∈ Mod(K) and ω1, ω2 /∈ Mod(K), or
5. ω1, ω1 ∩ ω2, ω1 ∪ ω2 ∈ Mod(K) and ω2 /∈ Mod(K).

Lemma 7. If a KB K is not L1CNF -expressible, then there
exist ω1, ω2 ∈ ClL1CNF

(K) being critical with respect to K.

Proof. The fact that K is not L1CNF -expressible implies
that either: (i) K is not closed under intersection or union,
or (ii) there are w1, w2, w3 ∈ ClL1CNF

(K) such that w1 ⊆
w3 ⊆ w2, and w1, w2 ∈ Mod(K), w3 /∈ Mod(K). Case (i)
implies that there exist w1, w2 ∈ Mod(K) such that one
of Cases 1-3 from Definition 9 holds. If we are in Case
(ii), then consider the interpretation w4 = (w2\w3) ∪ w1.
Clearly, w1 ⊆ w4 ⊆ w2, hence w4 ∈ ClL1CNF

(K). Also,

58 reactive policies with planning for action languages

w3 ∩ w4 = w1 and w3 ∪ w4 = w2. There are two sub-cases
to consider here. If w4 /∈ Mod(K), then we are in Case 4
of Definition 9. If w4 ∈ Mod(K), then we are in Case 5 of
Definition 9.

Example 2. Let us consider the KBK such that Mod(K) =
{∅, {a}, {b}, {c}, {a, c}, {b, c}, {a, b, c}}. K is not 1CNF -
expressible; indeed, Cl1CNF (Mod(K)) = Mod(K) ∪
{{a, b}}.

Here, we identify several sets of critical interpretations
w.r.t. K. First, S1 = {{a, c}, {a, b}, {a}, {a, b, c}} corre-
sponds to the situation described in Case 5 of Definition 9,
with ω1 = {a, c} and ω2 = {a, b}.

The set S2 = {{b, c}, {a, b}, {b}, {a, b, c}} also corre-
sponds to Case 5, with ω1 = {b, c} and ω2 = {a, b}.

We can also consider the set of interpretations S3 =
{∅, {a}, {b}, {a, b}}, which corresponds to Case 2 of Def-
inition 9, with ω1 = {a} and ω2 = {b}. The models of
K and the sets of critical interpretations are represented in
Figure 1.

a, b, c

a, ba, c b, c

a b c

∅
(a) S1

a, b, c

a, ba, c b, c

a b c

∅
(b) S2

a, b, c

a, ba, c b, c

a b c

∅
(c) S3

Figure 1: Models of K are in the shaded area; critical inter-
pretations are in the dashed areas.

We can now state the central result of this section.

Theorem 8. A KB K is L1CNF -distributable with respect
to ∆H,Σ if and only if K is L1CNF -expressible.

Proof. If part. By Proposition 1.
Only if part. Let K be a KB that is not L1CNF -

expressible. We will show that it is not L1CNF -distributable
w.r.t. ∆H,Σ. Suppose, on the contrary, that K is L1CNF -
distributable. Then there exists an L1CNF profile E =
(K1, . . . ,Kn) such that ∆H,Σ

µ (E) ≡ K, where Mod(µ) =
ClL1CNF (Mod(K)) (cf. Proposition 2).

By Lemma 7, there exist interpretations ω1, ω2 ∈ Mod(µ)
that are critical with respect to K. By Lemma 6, we have

H(ω1, E)+H(ω2, E)=H(ω1∩ω2, E)+H(ω1∪ω2, E). (1)

Let us now do a case analysis depending on the type of crit-
ical pair we are dealing with. If we are in Case 1 of Def-
inition 9, then it needs to be the case that H(ω1, E) =
H(ω2, E) = m, H(ω1 ∩ ω2, E) = m + k1 and H(ω1 ∪
ω2, E) = m+ k2, for some integers m ≥ 0 and k1, k2 > 0.
Plugging these numbers into Equality (1), we get that 2m =
2m + k1 + k2 and k1 + k2 = 0. Since k1, k2 > 0, we have
arrived at a contradiction. If we are in Case 2, then it needs
to be the case that H(ω1 ∩ ω2, E) = H(ω1 ∪ ω2, E) = m,

H(ω1, E) = m+ k1 and H(ω2, E) = m+ k2, for some in-
tegers m ≥ 0 and k1, k2 > 0. Plugging these numbers into
Equality (1) again, we get a contradiction along the same
lines as in Case 1. If we are in Case 3, then it needs to hold
that H(ω1, E) = H(ω1 ∩ ω2, E) = H(ω1 ∪ ω2, E) = m,
H(ω2, E) = m + k, for some integers m ≥ 0 and k > 0.
Plugging these numbers into Equality (1) gives us 2m+k =
2m and hence k = 0. Since k > 0, we have arrived at a
contradiction. Cases 4 and 5 are entirely similar.

In other words, for any L1CNF -profile and µ ∈ 1CNF ,
∆H,Σ
µ is guaranteed to be L1CNF -expressible as well. As

we have already shown in Theorem 3, this is not necessarily
the case if we replace Σ by GMin . The following example
shows how to obtain a similar behavior for GMax ; we then
generalize this idea below.
Example 3. Let U = {a, b} and K = {a∨ b,¬a∨¬b}. We
have Mod(K) = {{a}, {b}}. K is not L1CNF -expressible,
since ClL1CNF

(Mod(K)) = 2U . Let KS be the L1CNF -
KB with a single model S for any S ⊆ U and let us
have a look at the following distance matrix for µ with
Mod(µ) = ClL1CNF

(Mod(K)), E = (K{a},K{b}), and
E′ = (K∅,K{a,b}).

K∅ K{a} K{b} K{a,b} HGMin(E) HGMax (E′)
∅ 0 1 1 2 (1, 1) (2, 0)
{a} 1 0 2 1 (0, 2) (1, 1)
{b} 1 2 0 1 (0, 2) (1, 1)
{a, b} 2 1 1 0 (1, 1) (2, 0)

Recall that the lexicographic order of the involved vec-
tors is (0, 2) < (1, 1) < (2, 0). We thus get that
∆H,GMin
µ (E) ≡ K (see also Theorem 3), and on the other

hand, ∆H,GMax
µ (E′) ≡ K. �

Theorem 9. Any KB K such that Mod(K) = {ω, ω′} is
L1CNF -distributable with respect to ∆H,GMax .

Proof. If K is L1CNF -expressible, then the conclusion fol-
lows from Proposition 1. If K is not L1CNF -expressible,
then consider the set ClL1CNF (Mod(K))\Mod(K) =
{ω1, . . . , ωn}. We define the profile E = (K1, . . . ,Kn),
where Mod(Ki) = {U\ωi}, for i ∈ {1, . . . , n}.
We show that ∆H,GMax

µ (E) ≡ K, where Mod(µ) =
ClL1CNF

(Mod(K)).
First, we have that H(ωi,U\ωi) = |U|, which im-

plies that HGMax (ωi, E) = GMax (|U|, . . .), for any i ∈
{1, . . . , n}. Furthermore, since H(ω,U\ωi) < |U| and
H(ω′,U\ωi) < |U|, for any i ∈ {1, . . . , n}, it follows that
ω <H,GMax

E ωi and ω′ <H,GMax
E ωi. Next, we show that

HGMax (ω,E) = HGMax (ω′, E).
Consider the vectors V = (H(ω, ω1), . . . ,H(ω, ωn))

and V ′ = (H(ω′, ω1), . . . ,H(ω′, ωn)). Our claim is that
GMax (V) = GMax (V ′). To see why, notice that the ele-
ments in ClL1CNF (Mod(K)) form a complete subset lattice
with ω ∪ ω′ and ω ∩ ω′ as the top and bottom elements, re-
spectively. Let us write H(ω, ω′) = m. This lattice has 2m

elements, and the maximum distance of two elements in it is
m. Thus, the vector V is the vector of distances between ω
and every other element in this lattice, except itself and ω′. A

59

similar consideration holds for V ′. Hence V and V ′ are vec-
tors of length 2m−2 whose elements arem−1,m−2, . . . , 1.
We can actually count how many times each number appears
in V and V ′. The number of interpretations in the lattice that
are at distance of 1 from ω (and ω′) is

(
1
m

)
: thus, m − 1

appears
(

1
m

)
times in V (and V ′). The number of interpreta-

tions that are at distance 2 from ω (and ω′) is
(

2
m

)
, thusm−2

appears
(

2
m

)
times in V and V ′. We iterate this argument for

every distance, up to 1. It is then easy to see that, based on
these considerations, V and V ′ are equal when sorted in de-
scending order. Our conclusion follows from this.

The 2CNF Fragment
We show that every knowledge base K can be distributed in
the fragment L2CNF . Even a single L2CNF knowledge base
is enough to represent K. Before giving the general result,
we sketch the idea via an example.
Example 4. Let K be a KB with Mod(K) =
{{a, b}, {b, c, e}, {a, c, d}}. We observe that K is not
L2CNF -expressible since ClL2CNF

(Mod(K)) = Mod(K)∪
{a, b, c}. However, we can give an L2CNF -KB K ′ using
three new atoms x, y, z to penalize the undesired interpre-
tation {a, b, c} such that ∆H

µ (K ′) ≡ K, with µ ∈ L2CNF

of the form Mod(µ) = ClL2CNF
(Mod(K)). To this end, as-

sume K ′ with Mod(K ′) = {ω1, ω2, ω3, ω4} of the form
ω1 = {a, b, x, y},
ω2 = {b, c, e, x, z},
ω3 = {a, c, d, y, z},
ω4 = {a, b, c, x, y, z}.

One can verify that ClL2CNF (K ′) = Mod(K ′). Thus, K ′
can be picked from L2CNF . We use µ such that Mod(µ) =
ClL2CNF

(Mod(K)) and get distances
ω1 ω2 ω3 ω4 min

{a, b} 2 5 5 4 2
{b, c, e} 4 2 6 4 2
{a, c, d} 4 6 2 4 2
{a, b, c} 3 4 4 3 3

Here, each line gives the distance between a model of µ
and a model of K ′ (ωi columns), or between a model of
µ and K ′ (min column). The key observation is that pairs
from x, y, z as used in ω1, ω2, ω3 give minimal distances
2 while the remaining interpretation ω4, which corresponds
to the closure of K, contains all three new atoms (since
maj3({x, y}, {x, z}, {y, z}) = {x, y, z}). �
Theorem 10. Any KB K is L2CNF -simplifiable w.r.t. ∆H

µ .

Proof. We have to show that for any KB K, there exists
an L2CNF -KB K ′ and a formula µ ∈ L2CNF such that
∆H
µ (K ′) ≡ K. If K is L2CNF -expressible, the result is

due to Proposition 1. So suppose that K is not L2CNF -
expressible and let Mod(K) = {ω1, . . . , ωn}. Consider a
set of new atoms A = {a1, . . . , an}, and for each ωi ∈
Mod(K), let ω′i = ωi ∪A \ {ai}. We define the L2CNF -KB
K ′ and µ ∈ L2CNF such that

Mod(K ′) = ClL2CNF
({ω′i | ωi ∈ Mod(K)})

Mod(µ) = ClL2CNF
(Mod(K)).

Let Ω′ = {ω′i | ωi ∈ Mod(K)}. We first show
that for each ω ∈ Mod(K ′) \ Ω′, A ⊆ ω. In-
deed, for any triple ωj , ωk, ωl ∈ Mod(K), such that
ωjkl = maj3(ωj , ωk, ωl) /∈ Mod(K), we observe that
maj3(ω′j , ω

′
k, ω

′
l) = ωjkl ∪ maj3(A \ {aj}, A \ {ak}, A \

{al}) = ωjkl∪A. Thus, for each ω ∈ Cl1L2CNF
(Ω′)\Ω′,A ⊆

ω. Recall that Mod(K ′) = ClL2CNF (Ω′). It follows quite
easily that each further interpretation ω ∈ ClL2CNF (Ω′) \
(Cl1L2CNF

(Ω′) ∪ Ω′), also satisfies A ⊆ ω.
This shows that each model of K ′ contains at least n− 1

atoms from A. Thus, for every model ωi ∈ K, H(ωi,K
′) =

H(ωi, ω
′
i) = n − 1. It remains to show that for each ω ∈

Mod(µ)\Mod(K),H(ω,K ′) ≥ n. First, let ω′ ∈ Ω′. Since
ω /∈ Mod(K), ω′ \ A 6= ω and since ω′ contains n − 1
elements from A, we have H(ω, ω′) ≥ n. As shown above
all other interpretations ω′′ ∈ Mod(K ′) \ Ω′ contain all n
atoms from A, thus H(ω, ω′′) ≥ n, too.

As an immediate consequence, we obtain that any KB
K is L2CNF -distributable w.r.t. ∆H,⊗ for any aggregation
function ⊗. Note that this result is in strong contrast to the
L1CNF fragment, where only L1CNF -expressible KBs are
L1CNF -distributable w.r.t. ∆H,Σ.

The Horn-Fragment
We now turn our attention to theLHorn fragment. Recall Ex-
ample 1 where we have shown how to distribute some non
LHorn -expressible KB using a profile over two LHorn -KBs.
Our first result shows that in this example case we cannot re-
duce to profiles of a single KB, i.e. that there are KBs which
are LHorn -distributable but not LHorn -simplifiable.

Proposition 11. Given a KB K with Mod(K) =
{ω1, ω2, ω3}, where ω3 = ω1 ∪ ω2, H(ω1, ω2) = 2 and
ω1, ω2 are incomparable. Then K is not LHorn -simplifiable
w.r.t. ∆H .

Proof. The situation described in the Proposition corre-
sponds to K = {ω ∪ {a}, ω ∪ {b}, ω ∪ {a, b}} with ω
some interpretation which does not contain a or b. We need
Mod(µ) = {ω, ω ∪ {a}, ω ∪ {b}, ω ∪ {a, b}}, as required
by Proposition 2. We want to identify a LHorn -KB K ′ such
that ∆H

µ (K ′) ≡ K. This means that ω is the single model of
µ which is not minimal w.r.t. the Hamming distance. Let ω′1
be the model in K ′ closest to ω1 = ω ∪ {a} and ω′2 the one
closest to ω2 = ω ∪ {b}. We need a ∈ ω′1 and b ∈ ω′2; oth-
erwise H(ω, ω′1) < H(ω1, ω

′
1) or H(ω, ω′2) < H(ω2, ω

′
2);

further we need b /∈ ω′1 and a /∈ ω′2; otherwise H(ω3, ω
′
1) <

H(ω1, ω
′
1) or H(ω3, ω

′
2) < H(ω2, ω

′
2). Hence ω′1 and ω′2

are incomparable thus also ω′1 ∩ ω′2 ∈ Mod(K ′), since K ′
is a Horn KB. But then H(ω, ω′1 ∩ ω′2) ≤ H(ω1, ω

′
1).

Our next result shows that ∆H nonetheless increases the
range of LHorn -simplifiable KBs compared to ∆D (recall
Theorem 5).

Proposition 12. Any knowledge base K with Mod(K) =
{ω1, ω2} is LHorn -simplifiable w.r.t. ∆H .

Proof. If ω1, ω2 are comparable, we can apply Proposi-
tion 1. Thus, assume ω1, ω2 are incomparable and let d1 =

60 reactive policies with planning for action languages

|ω1 \ ω2| and d2 = |ω2 \ ω1|. W.l.o.g. assume d1 ≤ d2.
Also note that d1 > 0. We use K ′ with Mod(K ′) =
{ω+

1 , ω1 ∪ ω2} where ω+
1 adds d1 elements from ω2 \ ω1

to ω1. Thus, ω+
1 ⊆ ω1 ∪ ω2 and we can choose K ′ from

LHorn . Moreover, let µ ∈ LHorn such that Mod(µ) =
{ω1, ω2, ω1 ∩ ω2}. We have the following distances (note
that d(ω2, ω

+
1) = d1 + (d2 − d1)).

ω+
1 ω1 ∪ ω2 K ′

ω1 d1 d2 d1

ω2 d2 d1 d1

ω1 ∩ ω2 2d1 d1 + d2 > d1

Hence, ∆H
µ (K ′) ≡ K as desired.

Our final result concerns distributability in the Horn frag-
ment. We show that some KBs with three models can be dis-
tributed.

Proposition 13. Let K be a KB such that Mod(K) =
{ω1, ω2, ω3}. If ω1, ω2 and ω3 are not all pairwise in-
comparable, then K is Horn-distributable w.r.t. ∆H,⊗ with
⊗ ∈ {Σ,GMax ,GMin}.
Proof. If K is Horn-expressible, then the result follows
from Proposition 1. If K is not Horn-expressible, then we
do a case analysis on the number of pairwise incomparable
models of K.

Case 1. If exactly one pair of models of K are incompa-
rable, then we can assume without loss of generality that it
is ω1 and ω2. It follows then that ω3 6= ω1 ∩ ω2. Also, there
must be distinct atoms a and b such that a ∈ ω1, a /∈ ω2 and
b ∈ ω2, b /∈ ω1. We consider a constraint µ ∈ LHorn such
that Mod(µ) = {ω1, ω2, ω3, ω1 ∩ ω2}.

Case 1.1. If ω1 ⊆ w3 and w2 ⊆ ω3, then we take a glob-
ally new atom c and KBs K1 and K2 such that:

• Mod(K1) = {ω1∪{b}, ω2∪{a}, ω3, (ω1∩ω2)∪{a, b}}
• Mod(K2) = {ω1, ω2, ω3 ∪ {c}, ω1 ∩ ω2}
It is easy to see that K1 and K2 are Horn-expressible. Con-
sidering, now, the profile E = (K1,K2), we obtain the fol-
lowing distances:

K1 K2 Σ GMax GMin
ω1 1 0 1 (1, 0) (0, 1)
ω2 1 0 1 (1, 0) (0, 1)
ω3 0 1 1 (1, 0) (0, 1)
ω1 ∩ ω2 2 0 2 (2, 0) (0, 2)

So for each ⊕ ∈ {Σ, GMax,GMin} we obtain that
∆H,⊕
µ (E) ≡ K.
Case 1.2. If ω3 ⊆ ω1 and ω3 ⊆ ω2, then ω3 ⊆ ω1 ∩ ω2.

Moreover, since ω3 6= ω1 ∩ ω2, it actually holds that ω3 ⊂
ω1∩ω2. Thus there exists an atom c such that c ∈ (ω1∩ω2)
and c /∈ ω3. We now take KBs K1, K2, K3 and K4 such
that:

• Mod(K1) = {ω1∪{b}, ω2∪{a}, ω3, (ω1∩ω2)\{c}, (ω1∩
ω2) ∪ {a, b}}

• Mod(K2) = {ω1, ω2 ∪ {a}, ω3, (ω1 ∩ ω2) ∪ {a}}
• Mod(K3) = {ω1 ∪ {b}, ω2, ω3, (ω1 ∩ ω2) ∪ {b}}

• Mod(K4) = {ω1, ω2, ω3 ∪ {c}, ω1 ∩ ω2}
It is easy to see that K1, K2, K3 and K4 are
Horn-expressible. Considering, now, the profile E =
(K1,K2,K3,K4,K4), we obtain the following distances:

K1 K2 K3 K4 K4 Σ GMax GMin
ω1 1 0 1 0 0 2 (1,1,0,0,0) (0,0,0,1,1)
ω2 1 1 0 0 0 2 (1,1,0,0,0) (0,0,0,1,1)
ω3 0 0 0 1 1 2 (1,1,0,0,0) (0,0,0,1,1)
ω1 ∩ ω2 1 1 1 0 0 3 (1,1,1,0,0) (0,0,1,1,1)

So for each ⊕ ∈ {Σ, GMax,GMin} we obtain that
∆H,⊕
µ (E) ≡ K.
Case 2. If exactly two pairs of models of K are incompa-

rable, then we can assume without loss of generality that it
is w1, w2 and w2, w3. We consider a constraint µ ∈ LHorn

such that Mod(µ) = {ω1, ω2, ω3, ω1 ∩ ω2, ω2 ∩ ω3}. Then
there must be distinct atoms a and b such that a ∈ ω1,
a /∈ ω2 and b ∈ ω2, b /∈ ω1. Further, there must be dis-
tinct atoms c and d such that c ∈ ω2, c /∈ ω3 and d ∈ ω3,
d /∈ ω2.

Case 2.1. Ifw1 ⊆ w3, then we get that c /∈ ω1 and a ∈ ω3.
We take KBs K1 and K2 such that:

• Mod(K1) = {ω1∪{c}, ω2, ω3∪{c}, (ω1∩ω2)∪{c}, (ω2∩
ω3) ∪ {c}}

• Mod(K2) = {ω1, ω2 ∪ {a}, ω3, (ω1 ∩ ω2) ∪ {a}, (ω2 ∩
ω3) ∪ {a}}

It is easy to see that K1 and K2 are Horn-expressible. Con-
sidering, now, the profile E = (K1,K2) and keeping in
mind that c /∈ ω1 and a ∈ ω3, we obtain the following dis-
tances:

K1 K2 Σ GMax GMin
ω1 1 0 1 (1, 0) (0, 1)
ω2 0 1 1 (1, 0) (0, 1)
ω3 1 0 1 (1, 0) (0, 1)
ω1 ∩ ω2 1 1 2 (1, 1) (1, 1)
ω2 ∩ ω3 1 1 2 (1, 1) (1, 1)

So for each ⊕ ∈ {Σ, GMax,GMin} we obtain that
∆H,⊕
µ (E) ≡ K.
Case 2.2. Ifw3 ⊆ w1, then we get that b /∈ ω3 and d ∈ ω1.

We take KBs K1, K2 and such that:

• Mod(K1) = {ω1∪{b}, ω2, ω3∪{b}, (ω1∩ω2)∪{b}, (ω2∩
ω3) ∪ {b}}

• Mod(K2) = {ω1, ω2 ∪ {d}, ω3, (ω1 ∩ ω2) ∪ {d}, (ω2 ∩
ω3) ∪ {d}}

It is easy to see that K1 and K2 are Horn-expressible. Con-
sidering, now, the profile E = (K1,K2) and keeping in
mind that b /∈ ω3 and d ∈ ω1, we obtain the following dis-
tances:

K1 K2 Σ GMax GMin
ω1 1 0 1 (1, 0) (0, 1)
ω2 0 1 1 (1, 0) (0, 1)
ω3 1 0 1 (1, 0) (0, 1)
ω1 ∩ ω2 1 1 2 (1, 1) (1, 1)
ω2 ∩ ω3 1 1 2 (1, 1) (1, 1)

61

1CNF 2CNF Horn
simplifiable w.r.t. ∆D × × ×
simplifiable w.r.t. ∆H × X ◦

distributable w.r.t. ∆D,Σ X X X
distributable w.r.t. ∆H,Σ × X −

distributable w.r.t. ∆H,GMax − X −
distributable w.r.t. ∆H,GMin − X −

Table 1: Summary of Results

So for each ⊕ ∈ {Σ, GMax,GMin} we obtain that
∆H,⊕
µ (E) ≡ K. The cases when ω2 ⊆ ω3 or ω3 ⊆ ω2 are

symmetric. This concludes our case analysis, as any other re-
maining case results in either all of the interpretations ω1, ω2

and ω3 being pairwise incomparable, or in K being Horn-
expressible.

The remaining case (i.e., Mod(K) = {ω1, ω2, ω3} with
ω1, ω2, ω3 pairwise incomparable), as well as the more gen-
eral case when K has an arbitrary number of models is sub-
ject to ongoing work.

Conclusion
In this paper we have proposed the notion of distributability
and we have studied the properties of several merging op-
erators with respect to different fragments of propositional
logic. Our results are summarized in Table 1. The symbol
× means that only “trivial” knowledge bases (belonging to
the considered fragment) can be distributed with the corre-
sponding operator. Alternately,Xmeans that any knowledge
base can be distributed. Symbol−means we know that some
non-trivial knowledge bases can be distributed, and finally ◦
means that some, but not all, non-trivial bases can be simpli-
fied. Interestingly, the picture emerging from Table 1 is that
merging operators behave quite differently depending on the
distance and aggregation function employed, in a way that
does not lend itself to simple categorization. For instance,
our results on simplifiability imply that using Dalal revision
to L1CNF KBs never takes us outside the 1CNF fragment;
applying the same revision operator to L2CNF KBs can pro-
duce any KB in L; and applying it to LHorn KBs can pro-
duce some, though not all possible KBs.

Several questions are still open for future work. We plan
to study the exact characterization of what can (and cannot)
be distributed, in order to replace the symbols − and ◦ in
the previous table. Other merging operators can also be in-
tegrated to our study. Some of our results on distributability
require the addition of new atoms to the interpretations. We
want to determine whether similar results can be obtained
without modifying the set of propositional variables, in par-
ticular for the 2CNF fragment. We are also interested in the
number of knowledge bases needed to distribute knowledge:
given an integer n, a knowledge base K and a merging op-
erator ∆, is it possible to distribute K w.r.t. ∆ such that the
resulting profile contains at most n knowledge bases? This
paper was a first step to understand the limits of distributabil-
ity; the actual construction of the profile and complexity of

this process are important questions that will be tackled in
future research. Finally, we also consider applying the con-
cept of distributability to non-classical formalisms, in par-
ticular in connection with merging operators proposed for
logic programs (Delgrande et al. 2013).

Acknowledgments
This work was supported by the Austrian Science Fund
(FWF) under grant P25521.

References
Alchourrón, C. E.; Gärdenfors, P.; and Makinson, D. 1985.
On the logic of theory change : Partial meet contraction and
revision functions. Journal of Symbolic Logic 50:510–530.
Creignou, N.; Papini, O.; Pichler, R.; and Woltran, S. 2014a.
Belief revision within fragments of propositional logic.
Journal of Computer and System Sciences 80(2):427–449.
Creignou, N.; Papini, O.; Rümmele, S.; and Woltran, S.
2014b. Belief merging within fragments of propositional
logic. In Proceedings of the Twenty-First European Confer-
ence on Artificial Intelligence (ECAI’14), 231–236.
Creignou, N.; Pichler, R.; and Woltran, S. 2013. Do hard
SAT-related reasoning tasks become easier in the Krom
fragment? In Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence (IJCAI’13), 824–
831.
Darwiche, A., and Marquis, P. 2002. A knowledge compila-
tion map. Journal of Artificial Intelligence Research (JAIR)
17:229–264.
Delgrande, J. P., and Peppas, P. 2015. Belief revision in horn
theories. Artificial Intelligence 218:1–22.
Delgrande, J. P.; Schaub, T.; Tompits, H.; and Woltran, S.
2013. A model-theoretic approach to belief change in an-
swer set programming. ACM Transactions on Computa-
tional Logic 14(2).
Eiter, T., and Gottlob, G. 1992. On the complexity of propo-
sitional knowledge base revision, updates, and counterfactu-
als. Artificial Intelligence 57(2-3):227–270.
Fargier, H., and Marquis, P. 2014. Disjunctive closures
for knowledge compilation. Artificial Intelligence 216:129–
162.
Haret, A.; Rümmele, S.; and Woltran, S. 2015. Merging
in the Horn fragment. In Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence (IJ-
CAI’15), 3041–3047.
Katsuno, H., and Mendelzon, A. O. 1991. Propositional
knowledge base revision and minimal change. Artificial In-
telligence 52:263–294.
Konieczny, S., and Pino Pérez, R. 2002. Merging infor-
mation under constraints: a logical framework. Journal of
Logic and Computation 12(5):773–808.
Konieczny, S.; Lang, J.; and Marquis, P. 2002. Distance-
based merging: a general framework and some complexity
results. In Proceedings of the Eighth International Confer-
ence on Principles of Knowledge Representation and Rea-
soning (KR’02), 97–108.

62 reactive policies with planning for action languages

Konieczny, S.; Lang, J.; and Marquis, P. 2004. DA2 merging
operators. Artificial Intelligence 157(1-2):49–79.
Liberatore, P., and Schaerf, M. 2001. Belief revision and up-
date: Complexity of model checking. Journal of Computer
and System Sciences 62(1):43–72.
Liberatore, P. 2015a. Belief merging by examples. ACM
Transactions on Computational Logic 17(2):9:1–9:38.
Liberatore, P. 2015b. Revision by history. Journal of Artifi-
cial Intelligence Research (JAIR) 52:287–329.
Marquis, P. 2015. Compile! In Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence, 4112–
4118.
Zhuang, Z. Q., and Pagnucco, M. 2012. Model based horn
contraction. In Proceedings of the Thirteenth International
Conference on Principles of Knowledge Representation and
Reasoning (KR’12), 169–178.
Zhuang, Z., and Pagnucco, M. 2014. Entrenchment-based
horn contraction. Journal of Artificial Intelligence Research
(JAIR) 51:227–254.
Zhuang, Z. Q.; Pagnucco, M.; and Zhang, Y. 2013. Defin-
ability of horn revision from horn contraction. In Proceed-
ings of the Twenty-Third International Joint Conference on
Artificial Intelligence (IJCAI’13), 1205–1211.

63

Relations between assumption-based approaches in nonmonotonic logic and
formal argumentation*

Jesse Heyninck and Christian Straßer
Institute of Philosophy II, Ruhr Universität Bochum

Universitätstraße 150
44 800 Bochum, Germany

Abstract

In this paper we make a contribution to the unifi-
cation of formal models of defeasible reasoning. We
present several translations between formal argumenta-
tion frameworks and nonmonotonic logics for reasoning
with plausible assumptions. More specifically, we trans-
late adaptive logics into assumption-based argumenta-
tion and ASPIC+, ASPIC+ into assumption-based ar-
gumentation and a fragment of assumption-based ar-
gumentation into adaptive logics. Adaptive logics are
closely related to Makinson’s default assumptions and
to a significant class of systems within the tradition of
preferential semantics in the vein of KLM and Shoham.
Thus, our results also provide close links between for-
mal argumentation and the latter approaches.

1 Introduction
There is a a plenitude of logical approaches to the modelling
of defeasible reasoning known as nonmonotonic logics (in
short, NMLs). These approaches often use different meth-
ods, representational formats or key ideas, making it some-
times difficult to compare them, e.g. with respect to the con-
sequence relations they give rise to. Such comparisons are
important to systematise the field of NMLs and to gain in-
sights into which forms of defeasible reasoning are express-
ible in which formal frameworks. An important tool for such
comparisons are translations between systems of NML. If
one system (or a fragment thereof) is translatable into an-
other system we immediately know that the latter system is
at least as expressive as the former. Moreover, this may lead
to forms of cross-fertilisation, since meta-theoretic proper-
ties become transferable between the translated systems.

In this contribution we will investigate several such trans-
lations. Given the richness of the domain of NMLs, we ap-
proach the topic from a specific angle. Our focus will be
on structured argumentation, on the one hand, and NMLs
that model defeasible inferences in terms of strict inference
rules and defeasible assumptions, on the other hand. As a

*The research of the authors was supported by a Sofja Ko-
valevkaja award of the Alexander von Humboldt-Foundation,
funded by the German Ministry for Education and Research.
Copyright © 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

side product, the translation will also cover a significant sub-
class of NMLs in the KLM paradigm based on preferential
semantics [18, 12].

At least since Dung introduced abstract argumenta-
tion [8], formal argumentation has been an important
sub-domain of NML. While in abstract argumentation
arguments are not phrased in a formal language and the
underlying inferences are not explicated, several systems of
structured or instantiated formal argumentation have been
developed which overcome this limitation (cf. [5] for a
partial overview). In this paper we will focus on two of the
most prominent accounts: assumption-based argumentation
(in short, ABA) [7, 10, 20] and ASPIC+ [16, 14].

One of the key differences between several formal ap-
proaches to defeasible reasoning concerns the question of
how to model defeasible inferences. Let A1, . . . , An B
denote the defeasible inference from A1, . . . , An to B. The
question is whether such an inference should be phrased
in terms of a strict inference rule or a defeasible one. A
strict inference rule allows for no exceptions: if its premises
A1, . . . , An are true, the consequent B is true as well. In
contrast, defeasible rules allow for exceptions, that is, un-
der specific circumstances it may hold that all premises
A1, . . . , An of the rule hold while the consequentB doesn’t.
Clearly, in the approach with strict rules defeasibility has to
enter in a different way. One way is by means of explicitly
stated defeasible assumptions As1, . . . ,Asm, i.e., specific
premises which are assumed to hold by default and which
can serve as antecedents of strict rules. An inference is re-
tracted in case there is a demonstration that one of the de-
feasible assumptions As1, . . . ,Asm doesn’t hold.

ABA follows the approach based on strict rules and defea-
sible assumptions. In ASPIC+ both approaches can be rep-
resented. Not surprisingly, ABA has been shown to be trans-
latable to ASPIC+ [16]. In this paper we will show the other
(perhaps more surprising) direction, namely that ASPIC+

(without priorities) can be translated into ABA and thus that
both frameworks are equi-expressive.

There are several nonmonotonic systems that model de-
feasible inference by means of strict rules. Among them
are adaptive logics (in short, ALs) [4], Makinsons’ default
assumptions and forms of circumscription. Makinson’s de-
fault assumptions –and in view of the translation in [22] also
ALs– are a generalisations of approaches based on maximal

65

ABA (§4)

ASPIC+ (§5)

Prakken
(2010) §7 ALs (§2)

§6
§8

KLM (§3)

§3

DACR (§3)

Van de Putte
(2013)

Figure 1: Roadmap

consistent subsets [17]. In view of [1] we know that there
are close connections between approaches based on maxi-
mal consistent subsets and structured argumentation. In this
paper the ties will be strengthened. We show that ALs can be
translated into ABA and ASPIC+ and present a translation
in the opposite direction for a subclass of ABA and ASPIC+.

We will proceed as follows: in Sections 2–5 we introduce
the basic systems (ALs, preferential semantics, default as-
sumptions, ABA, and ASPIC+). In Sections 6–8 we provide
translations as indicated in Figure 1.

2 Adaptive Logics
ALs are a general framework for the formal explication of
defeasible reasoning. It has been applied to a multitude of
defeasible reasoning forms (mainly related to questions from
philosophical logic), such as nonmonotonic forms of reason-
ing with inconsistent information, causal discovery, induc-
tive generalisations, abductive hypothesis generation, nor-
mative reasoning, etc. (see [19, p.86] for an overview).

The driving idea behind ALs is to apply defeasible in-
ference rules under explicit normality assumptions. More
specifically, given a compact Tarksi logic L (the core or
lower limit logic) in a formal language L and with the deriv-
ability relation `L, a set of abnormalities Ω ⊆ L is fixed.
Now, whenever the core logic gives rise to Γ `L A ∨ ab
where ab ∈ Ω, A can be derived in the adaptive logic (based
on L and Ω) on the (defeasible) assumption that ab is false.1

In ALs this basic idea of modeling defeasible inferences
is implemented in Hilbert-style proofs. We will first explain
the proof theory of ALs.2 Then we give alternative character-
izations of the adaptive consequence relations that are cen-
tral to prove the adequacy of our translations in subsequent
sections.

In ALs, usual Hilbert-style proofs are adjusted in two ma-
jor ways. First, to keep track of normality assumptions, proof
lines in adaptive proofs are equipped with an additional col-
umn in which the abnormalities are listed that are assumed
to be false. Second, different retraction mechanisms for lines

1The disjunction ∨ is supposed to be classical. In fact, in the
standard format of ALs which we consider here, the core logic is
supposed to be supraclassical. Whenever non-classical logics are
used as core logics, classical negation ¬ and classical disjunction
∨ are superimposed.

2Due to spatial restrictions we will focus on the main ideas but
explain some aspects of the proof theory (such as adaptive strate-
gies) merely in a semi-formal way. For a more thorough explana-
tion the interested reader is referred to [4, 19].

with abnormality assumptions that turn out mistaken are im-
plemented in terms of so-called adaptive strategies. We will
give some examples below.

To further explain how adaptive proofs work, it is useful to
turn to a concrete example. As an illustration, we take a look
at inconsistency-ALs. These are based on paraconsistent
core logics such as LP or CLuN(s)3. These core logics typ-
ically do not validate disjunctive syllogism A,∼A ∨B ` B
since in case A is involved in a contradiction, B would not
follow (then∼Awould suffice for the disjunction∼A∨B to
be true). Nevertheless, inconsistency-ALs allow for the de-
feasible application of disjunctive syllogism under the nor-
mality assumption that there is no contradiction inA. Hence,
in inconsistency ALs the abnormalities in Ω typically have
the form of a contradiction A ∧ ∼A. E.g., in paraconsistent
core logics it usually holds that A,∼A∨B ` B∨ (A∧∼A)
and thus one can defeasibly derive B under the assumption
that there is no contradiction in A. Clearly, sometimes such
assumptions turn out to be mistaken in view of the given
premises. Obviously, this is the case if A ∧ ∼A is derivable
from the given premises. A more interesting case is given, if
A∧∼A is not directly derivable but it is derivable as a mem-
ber of a minimal disjunction of abnormalities. We illustrate
this in the following example.
Example 1. Suppose our core logic is a standard
paraconsistent logic such as LP or CLuN(s). Let
Γ = {∼p,∼q, p ∨ q, p ∨ r, q ∨ s}.

1 ∼p PREM ∅
2 ∼q PREM ∅
3 p ∨ r PREM ∅
4 q ∨ s PREM ∅
5 p ∨ q PREM ∅
6 r ∨ (p ∧ ∼p) 1,3,L-Inf ∅
7 s ∨ (q ∧ ∼q) 2,4,L-Inf ∅
8 r 6,RC {p ∧ ∼p}
9 s 7,RC {q ∧ ∼q}

10 r ∨ s 8,L-Inf {p ∧ ∼p}
11 r ∨ s 9,L-Inf {q ∧ ∼q}
12 (p ∧ ∼p) ∨ (q ∧ ∼q) 1,2,5,L-Inf ∅

Each proof line has 4 elements: a line number, a formula,
a justification and a set of abnormalities (which are assumed
to be false). All inferences of the core logic L can be applied
(indicated by L-Inf in lines 6, 10, 11 and 12). In lines 8 and
9 defeasible inferences are made as explained above. E.g.,
since at line 6 r∨(p∧∼p) is derived, at line 8 the abnormal-
ity p∧∼p is considered false and thus put in the abnormality
column. The rule employed for this is called RC (rule condi-
tional): from (l;A ∨ ab; ∆) derive (l′;A; l, RC; ∆ ∪ {ab}).
When further inferences are made calling upon lines with
non-empty sets of abnormalities, these abnormalities are
carried over (see lines 10 and 11 where the abnormalities
of lines 8 and 9 are carried over).

The retraction of lines in adaptive proofs is always deter-
mined in view of the minimal disjunctions of abnormalities
derived at a given stage of a proof (on the empty set of ab-
normalities). At line 12 such a minimal disjunction of ab-

3CLuN(s) is positive classical logic enriched by the law of the
excluded middle. For an axiomatization and a semantics see [3].

66 relations between assumption-based approaches in nonmonotonic logic and formal argu . . .

normalities is derived. Clearly, the abnormalities assumed to
be false at lines 8–11 are involved in the given disjunction.
There are different retraction mechanisms for ALs: so-called
adaptive strategies. According to the reliability strategy, any
line with an abnormality in the assumption that is part of a
minimal disjunction of abnormalities is to be retracted. Re-
traction is implemented by marking lines that are retracted.
In this case:

X 8 r 6,RC {p ∧ ∼p}
X 9 s 7,RC {q ∧ ∼q}
X 10 r ∨ s 8,L-Inf {p ∧ ∼p}
X 11 r ∨ s 9,L-Inf {q ∧ ∼q}

There are other, less cautious, strategies. For instance, ac-
cording to the minimal abnormality strategy, r ∨ s will not
be retracted. The reason is as follows. If we interpret our
premises strictly as normal as possible, then in view of line
12 it will be the case that either p ∧ ∼p holds (and q ∧ ∼q
doesn’t), or q∧∼q holds (and p∧∼p doesn’t). In each case,
one of the assumptions of line 10 or 11 is warranted. Due to
space limitations, we omit the technical details. Yet another
strategy is normal selections. According to it a line with the
set of abnormalities ∆ is retracted (or marked) once

∨
∆ is

derived on the empty condition.
These retraction mechanisms provided by adaptive strate-

gies make AL proofs dynamic: sometimes a line may get
marked, later unmarked, and yet later marked again. In or-
der to define a consequence relation we need a stable notion
of derivability. It works as follows: a formula at a line l of
a proof is finally derived at a stage of the proof if l is not
marked and every extension of the proof in which it gets
marked can be further extended such that it is unmarked
again. The consequence relation of ALs is the defined as
follows:

Definition 1. Let L be a compact Tarski logic in the formal
language L, let Ω ⊆ L be a set of abnormalities, and let
str ∈ {r,ma, ns} be an adaptive strategy (reliability, mini-
mal abnormality, or normal selections). Where Γ∪{A} ⊆ L,
Γ `Ω,L

str A iff A is finally derivable in an adaptive proof from
Γ.

For our translations alternative characterisations of the
consequence relations defined in terms of final derivability
in Definition 1 will be very useful. These characterisations
are essentially informed by the set of minimal disjunctions
of abnormalities derivable from a given premise set by the
core logic L.

Definition 2. Where Γ ⊆ L: ΣL(Γ) is the set of all non-
empty ∆ ⊆ Ω such that Γ `L

∨
∆ and for all non-empty

∆′ ⊂ ∆, Γ 0L

∨
∆′.

A choice set over ΣL(Γ) is a set Θ for which ∆ ∩Θ 6= ∅
for all ∆ ∈ ΣL(Γ).

Definition 3. Where Γ ⊆ L: ΦL(Γ) is the set of ⊂-minimal
choice sets over ΣL(Γ).

The following facts will be useful in what follows:

Fact 1 ([19]). 1. For all choice sets Θ over ΣL(Γ) there is
a Θ′ ∈ ΦL(Γ) such that Θ′ ⊆ Θ.

2. φ ∈ ΦL(Γ) iff φ is a choice set of ΣL(Γ) and for all
A ∈ φ there is a ∆A ∈ ΣL(Γ) for which {A} = ∆A ∩ φ.

We now give representation theorems for all three adap-
tive strategies, a given core logic L and a given set of abnor-
malities Ω.

Theorem 1 ([4]). Γ `Ω,L
ma A iff for all Θ ∈ ΦL(Γ) there is a

∆ ⊆ Ω \Θ such that Γ `L A ∨
∨

∆.

Theorem 2 ([4]). Γ `Ω,L
r A iff there is a ∆ ⊆ Ω \⋃ΣL(Γ)

such that Γ `L A ∨
∨

∆.

Theorem 3 ([4]). Γ `Ω,L
ns A iff there is a Θ ∈ ΦL(Γ) and a

∆ ⊆ Ω \Θ such that Γ `L A ∨
∨

∆.

3 Preferential Semantics and Default
Assumptions

The semantics for ALs are a special but rich subclass of the
well known preferential semantics as defined in [12] and
[18]. As in the previous section we assume a core logic L
in a formal language L and a set of abnormalities Ω ⊆ L.
We also assume that the core logic L comes with an ade-
quate model-theoretic semantics and an associated semantic
consequence relation L. We writeM(Γ) for the set of all
models of a premise set Γ. Furthermore, whereM ∈M(Γ),
Ab(M) = {A ∈ Ω | M |= A}. A model M ∈ M(Γ) is
minimally abnormal iff there is no M ′ ∈ M(Γ) for which
Ab(M ′) ⊂ Ab(M).

Definition 4. • Γ Ω,L
ma A iff M |= A for every minimally

abnormal model of Γ.
• Γ Ω,L

r A iff M |= A for every M ∈ M(Γ) for which
all A ∈ Ab(M) are verified in some minimally abnormal
model M ′ ∈M(Γ).

• Γ Ω,L
ns A iff there is a minimally abnormal model M ∈

M(Γ) such that for all M ′ ∈M(Γ) for which Ab(M) =
Ab(M ′), M ′ |= A.

ALs in the standard format are sound and complete w.r.t.
these semantics (proven e.g. in [4]):

Theorem 4. Where Γ ∪ {A} ⊆ L and str ∈ {ma, r, ns},
Γ Ω,L

str A iff Γ `Ω,L
str A.

In [22], the connection between ALs and Makinson’s De-
fault Assumption Consequence Relations (in short, DACRs)
[13, chapter 2] was established. In [13, chapter 2], it is also
shown that many other non-monotonic consequence rela-
tions, such as Reiter’s Closed World Assumption, Poole’s
Background Constraints, etc. can be expressed as DACRs.
DACRs give formal substance to the idea that, in many sit-
uations, non-monotonic reasoning makes use of a set ∆ of
defeasible background assumptions in combination with the
strict and explicit premises in Γ. These background assump-
tions are used to the extent that they are consistent with Γ.
Accordingly, DACRs make use of the notion of maximal
consistent subset:

Definition 5. Where Γ ∪ ∆ ⊆ L, Θ ⊆ ∆ is a maximal
Γ-consistent subset of ∆ iff:

• Γ ∪Θ 6`L A for some A ∈ L and
• Γ ∪Θ′ `L A for all A ∈ L and for every Θ ⊂ Θ′ ⊆ ∆.

67

MCS(Γ,∆) is the set of all maximal Γ-consistent subsets of
∆.
Definition 6. Where Γ ∪∆ ∪ {A} ⊆ L, Γ `DA,L

∆ A iff for
every ∆′ ∈ MCS(Γ,∆), Γ ∪∆′ `L A.

The connection between adaptive logic and DACR’s is the
following:
Theorem 5. [22, p.10] Where Γ∪∆∪{A} ⊆ L and ∆¬ =

{¬B | B ∈ ∆}, Γ `DA,L
∆ A iff Γ `∆¬,L

ma A.

4 Assumption-Based Argumentation
ABA, thoroughly described in [7], is a formal model that al-
lows one to use a set of plausible assumptions “to extend a
given theory” [7, p.70] unless and until there are good argu-
ments for not using such an assumption.

Inferences are implemented in ABA by means of a deduc-
tive system consisting of a language and rules formulated
over this language:
Definition 7 (Deductive System). A deductive system is a
pair (L,R) such that
• L is a formal language (consisting of countably many sen-

tences).
• R is a set of inference rules of the form A1, . . . , An → A

and → A, where A,A1 . . . , An ∈ L
Definition 8. AnR-deduction from a theory Γ is a sequence
B1, . . . , Bm, where m > 0 such that for all i = 1, . . . ,m:
Bi ∈ Γ or there exists a A1, . . . , An → Bi ∈ R such that
A1, . . . , An ∈ {B1, . . . , Bi−1}.
Definition 9. Where Γ ∪ {A} ⊆ L, Γ `R A holds if there
is anR-deduction from Γ whose last element is A.

We now introduce defeasible assumptions and a contrari-
ness operator to express argumentative attacks. Given a rule
system, an assumption-based framework is defined as fol-
lows:
Definition 10 (Assumption-based framework). An
assumption-based framework is a tuple ABF =
((L,R),Γ, Ab,) where:
• (L,R) is a deductive system
• Γ ⊆ L
• ∅ 6= Ab ⊆ L is the set of candidate assumptions.
• : Ab→ L is a contrariness operator.4

In most structured accounts of argumentation attacks are
defined between arguments which are deductions in a given
deductive or defeasible system (e.g., in ASPIC+, Defeasi-
ble Logic Programming [11]) or sequents Γ `L A where L
is an underlying core logic ([2, 6]).5 In contrast, ABA op-
erates at a higher level of abstraction, since attacks are de-
fined directly on the level of sets of assumptions instead of
on the level of R-deductions.6 ABA can thus be viewed as

4Note that does not denote the set theoretic complement.
5The former are sometimes referred to as rule-based and the

latter as logic-based systems of argumentation.
6Some formulations of ABA define attacks on the level of in-

dividual arguments. However, since attacks are only possible ‘on’
assumptions, these formulations are equivalent (cf. also [20]).

operating on the level of equivalence classes consisting of
arguments generated using the same assumptions.

Definition 11 (Attacks). Given an assumption-based frame-
work ABF = ((L,R),Γ, Ab,):

• a set of assumptions ∆ ⊆ Ab attacks an assumption A ∈
Ab iff Γ ∪∆ `R A.

• a set of assumptions ∆ ⊆ Ab attacks a set of assumptions
∆′ ⊆ Ab iff Γ ∪∆ `R A for some A ∈ ∆′.

Consequences of a given assumption-based framework
are determined with the use of argumentation semantics.
On the basis of argumentative attacks, semantics determine
sets of assumptions that are acceptable given different cri-
teria of acceptability, such as the requirement that a given
set of assumption should not attack itself, or it should be
able to defend itself against attacks by other sets of assump-
tions. Argumentation semantics have been phrased for ab-
stract frameworks in [8] and have been generalised to the
level of ABA in e.g. [7].

Definition 12 (Argumentation semantics). Where ∆ ⊆ Ab:
• ∆ is closed iff ∆ = {A ∈ Ab | Γ ∪∆ `R A}.
• ∆ is conflict-free iff for every A ∈ Ab,∆ ∪ Γ 6`R A or

∆ ∪ Γ 6`R A.
• A closed set ∆ is naive iff it is maximally (w.r.t. set inclu-

sion) conflict-free.
• A closed set of assumptions ∆ ⊆ Ab is admissible iff it is

conflict-free and for each closed set of assumptions ∆′ ⊆
Ab, if ∆′ attacks ∆, then ∆ attacks ∆′.

• A set ∆ is preferred iff it is maximally (w.r.t. set inclusion)
admissible.

• ∆ is stable iff it is closed, conflict-free and attacks every
a ∈ Ab \∆.

We write niv(ABF), prf(ABF) resp. stb(ABF) for the set
of naive, preferred resp. stable sets of assumptions in ABF.

Example 2. Let Ab = {q,¬p ∨ ¬q}, Γ = {p}, let the rule
system R characterize classical logic and A = ¬A (where
¬ is classical negation). Then there are two preferred sets:
{¬p∨¬q}, {q}. To see this note that e.g. Γ∪{¬p∨¬q} `R
¬q and Γ ∪ {q} `R ¬(¬p ∨ ¬q).

We are now in a position to define various consequence
relations for ABA:

Definition 13. Given an assumption-based framework
ABF = ((L,R),Γ, Ab,) and sem ∈ {niv, prf, stb}:
• ABF `∪sem A iff Γ∪∆ `R A for some ∆ ∈ sem(ABF).
• ABF `∩sem A iff Γ∪∆ `R A for every ∆ ∈ sem(ABF).
• ABF `esem A iff Γ ∪⋂{∆ | ∆ ∈ sem} `R A.

5 ASPIC+

In ASPIC+, as in ABA, inferences made on the basis of a
strict knowledge base can be extended with additional infer-
ences based on plausible assumptions. However, whereas in
ABA attacks and extensions where defined directly on the
level of these assumptions, in ASPIC+, arguments are spe-
cific deductions. More precisely, arguments are constructed

68 relations between assumption-based approaches in nonmonotonic logic and formal argu . . .

from a knowledge base using an argumentation system. An
argumentation system is a generalisation of a deductive sys-
tem (Def. 7) that allows for a distinction between strict (i.e.
deductive or safe) and defeasible rules.7

Definition 14 (Defeasible Theory). Given a formal lan-
guage L, a defeasible theory R = (L,S,D) consists of
(where A1, . . . , An, B ∈ L):

• a set of strict rules S of the form A1, . . . , An → B

• a set of defeasible rules D of the form A1, . . . , An ⇒ B.

We also assume there is a naming function N : S ∪ D →
L s.t. every rule r ∈ S ∪ D gets assigned a unique name.
A1, . . . , An are called the antecedents and B is called the
consequent of A1, . . . , An → B resp. A1, . . . , An ⇒ B.

Definition 15 (Argumentation System). Given a defeasible
theory R, an argumentation system is a tuple AS = (R,)
where is a contrariness function from L to 2L.

Arguments are built by using defeasible and/or strict rules
to derive conclusions from a knowledge base. A knowledge
base consists of strict and plausible premises. Kn is the set
of all (necessary) axioms, i.e. premises that are considered
to be outside the reach of argumentative attacks. Ka has an
analogous function to the defeasible assumptions in ABA:
they are deemed plausible in that they are assumed to be
true unless and until a counterargument is encountered.

Definition 16 (Knowledge Base). A Knowledge Base is a
set K, where K = Kn ∪ Ka and Kn ∩ Ka = ∅.
Definition 17 (Arguments). Let AS = (R,) be an argu-
mentation system and K = Ka ∪ Kn a knowledge base. An
argument a is one of the following:

• a premise argument 〈A〉 if A ∈ K
• a strict rule-argument 〈a1, . . . an 7→ B〉 if a1, . . . an (with
n > 0) are arguments such that there exists a strict rule
conc(a1), . . . conc(an)→ B ∈ S.

• a defeasible rule-argument 〈a1, . . . an V B〉 if a1, . . . an
(with n > 0) are arguments such that there exists a defea-
sible rule conc(a1), . . . conc(an)⇒ B.

We will use Arg(AS,K) to denote the set of all arguments
that can be built from a knowledge base K using an argu-
mentation system AS.

Example 3. Let S = {¬q → ¬p}, D = {¬p ⇒ s}, Kn =
{¬s}, and Ka = {¬q,¬p, q}. We have, e.g., the following
arguments:

a1 = 〈¬q〉 a4 = 〈a3 V s〉 a7 = 〈¬s〉
a2 = 〈¬p〉 a5 = 〈a2 V s〉
a3 = 〈a1 7→ ¬p〉 a6 = 〈q〉

7In the ASPIC+ framework of [16], there is also the possibil-
ity to add a preference ordering over the premises and/or defea-
sible rules. Similar generalisations exist for ALs and approaches
based on maximal consistent subsets and their generalisations such
as Makinsons’ default assumptions. We will present investigations
into translations for systems with priorities at a future occasion. In
our presentation, we also disregard a special type of premise called
‘issue’ in the context of ASPIC+. Issues are premises that are never
acceptable in the sense that they always require further backup by
additional arguments.

Definition 18. Where a is an argument a = 〈B〉, a =
〈a1, . . . an 7→ B〉 or a = 〈a1, . . . an V B〉, we define:

• conc(a) = B

• sub(a) = sub(a1) ∪ . . . ∪ sub(an) ∪ {a}
• where a is a premise argument: prem(a) = {A}
• where a is not a premise argument: prem(a) =
{prem(a′) | a′ ∈ sub(a)}.
The distinction between strict and defeasible rule-

arguments allows us to define a variety of attack forms:

Definition 19 (Attacks). Where a, b ∈ Arg(AS,K), a at-
tacks b (in signs, a b) iff

• conc(a) ∈ B for someB ∈ prem(b)∩Ka (Undermining).

• conc(a) ∈ B′ for some b′ ∈ sub(b) such that conc(b′) =
B′ and b′ is of the form 〈b′1, . . . , b′n V B′〉 (Rebut).

• conc(a) = b′ for some b′ ∈ sub(b) such that b′ is a defea-
sible argument (Undercut).

Example 4 (Ex. 1, contd). Where A = {B | B ≡ ¬A}
for every A ∈ L, we have: a1 a6, a6 a1, a6 a3,
a6 a4, a7 a4, a7 a5.

Definition 20 (Structured Argumentation Frame-
work). A structured argumentation framework
AT = (Arg(AS,K),) is a pair where Arg(AS,K)
is the set of arguments built from K using the argumentation
system AS and is an attack relation over Arg(AS,K).

Given a structured argumentation framework, we can
again make use of Dung’s argumentation semantics to de-
fine different notions of acceptable sets of arguments.

Definition 21 (Argumentation Semantics). Given a struc-
tured argumentation framework AT = (Arg(AS,K),),
where B ⊆ Arg(AS,K),

• B is conflict-free iff there is no a, b ∈ B such that a b

• B is naive iff it is maximally conflict-free.
• B defends a ∈ A iff for every c ∈ A for which c a,

there is a b ∈ B such that b c.
• B is admissible iff it is conflict-free and it defends every

argument a ∈ B
• B is preferred iff it is maximally (w.r.t. set inclusion) ad-

missible.
• B is stable iff it is conflict-free and for every a ∈
Arg(AS,K) \ B, B a.

We write niv(AT), prf(AT) resp. stb(AT) for the set of
naive, preferred resp. stable sets of arguments in AT.

Definition 22. Where AT = (Arg(AS,K),) is a struc-
tured argumentation framework and sem ∈ {niv, prf, stb},
• AT `∪sem A iff there is an a ∈ B with conc(a) = A for

some B ∈ sem(AT).
• AT `∩sem A iff for every B ∈ sem(AT) there is an a ∈ B

with conc(a) = A.
• AT `esem A iff there is an a ∈ B with conc(a) = A for

every B ∈ sem(AT).

69

6 Translating Adaptive Logic to
Assumption-Based Argumentation

The idea of the translation from ALs to ABA is the follow-
ing. We translate the lower limit logic L of the given AL
into a deductive system, plausible assumptions are negations
of abnormalities, and the contrariness operator is classical
negation. Recall that the lower limit logic is a supraclassical
Tarski logic. Hence, there are classical negation ¬ and clas-
sical disjunction ∨ in the underlying language of L. In the
remainder of this section we will use ¬ and ∨ denoting these
classical connectives.

We now go through the technical details of our translation.
Definition 23. Let AL be an AL with the lower limit logic
L in a formal language L and the consequence relation `L,
the set of abnormalities Ω ⊆ L and a strategy str (relia-
bility, minimal abnormality, or normal selections). Let L be
characterised by the rules in R and the axiom schemes in A.
We the define the assumption based framework ABFΩ

L(Γ)

for the premise set Γ ⊆ L as the tuple ABFΩ
L(Γ) =

((L,R(L)),Γ, AbΩ,) where:
• R(L) contains all instances of rules in R and a rule→ A

for all instances A of axiom schemes in A;8

• AbΩ = {¬A | A ∈ Ω}
• : AbΩ → L, where ¬A = A

Below we show the following representational theorem:
Theorem 6. Where Γ∪{A} ⊆ L and sem ∈ {niv, prf, stb},
1. ABFΩ

L(Γ) `∪sem A iff Γ `Ω,L
ns A

2. ABFΩ
L(Γ) `∩sem A iff Γ `Ω,L

ma A

3. ABFΩ
L(Γ) `esem A iff Γ `Ω,L

r A.
To avoid clutter we introduce some notational convention:

Notation 1. Where ∆ ⊆ Ω, ∆¬ = {¬A | A ∈ ∆} and
∆¬ = ∆.

The following fact follows immediately in view of the
compactness and the transitivity of L.
Fact 2. Where Γ ∪ {A} ⊆ L, Γ `R(L) A iff Γ `L A.

In view of this fact, we will indiscriminately use ` as
`R(L) and `L. Note that in view of the supraclassicality of
L we have:
Fact 3. Γ ∪∆¬ ` A iff Γ ` ∨∆¬ ∨A.

We now established that every instantiation of an AL is
indeed an assumption-based framework. We prove that the
three consequence relations of ALs correspond to intuitive
ways of calculating consequences in ABA. The crucial re-
sult to prove this is the fact that every preferred extension
in some assumption-based framework ABFΩ

L(Γ) is exactly
the set of negations of abnormalities excluding some choice
set over the derivable abnormalities. This is shown in the
following lemmas.
Lemma 1. Where φ ∈ ΦL(Γ), AbΩ \ φ¬ is stable in
ABFΩ

L(Γ).

8If no axiomatisation of L is given, we can proceed more brute
force and setR = {A1, . . . , An → A | {A1, . . . , An} `L A}.

Proof. We first show that ∆¬ = AbΩ \ φ¬ is conflict-free.
Assume for a contradiction that it is not and hence that there
is a B ∈ Ω for which Γ∪∆¬ ` B,¬B. Hence, by the com-
pactness of L and Fact 3, Γ ` ∨Θ for some finite Θ ⊆ ∆.
Let Θ be ⊂-minimal with this property. Hence, Θ ∈ ΣL(Γ).
However, then φ ∩Θ 6= ∅, a contradiction.

We now show that ∆¬ is stable. For this, let ¬B ∈ AbΩ \
∆¬. Hence, B ∈ φ. With Fact 1.2, there is a Θ ∈ ΣL(Γ)
such that {B} = φ ∩ Θ. Since Γ ` ∨Θ, by Fact 3 also
Γ∪ (Θ¬ \{¬B}) ` B. By the monotonicity of L, Γ∪∆¬ `
B which means that ∆ attacks B.

Since ∆¬ is conflict-free and attacks everyA ∈ AbΩ\∆¬,
it is easy to see that ∆¬ is closed and stable.

Example 5 (Ex. 1 contd). Take AbΩ = {¬(A ∧ ∼A) | A ∈
LCLuN} andR an adequate rule system for CLuN. Where
Γ = {∼p,∼q, p ∨ q, p ∨ r, q ∨ s}. There are two stable
extensions: AbΩ \{¬(p∧∼p)} and AbΩ \{¬(q∧∼q))}. To
see this observe that e.g. Γ ∪ {¬(q ∧ ∼q)} `CLuN p ∧ ∼p.

Lemma 2. If ∆¬ ⊆ AbΩ is conflict-free in ABFΩ
L(Γ) then

there is a φ ∈ ΦL(Γ) for which ∆ ⊆ Ω \ φ.
Proof. Suppose ∆ 6⊆ Ω \ φ for all φ ∈ ΦL(Γ) and ∆ ⊆ Ω.
By Fact 1, Ω \ ∆ is not a choice set of ΣL(Γ). Thus, there
is a Θ ∈ ΣL(Γ) for which Θ ⊆ ∆. Since Γ ` ∨Θ, also
Γ ∪ (Θ \ {A}) ` ¬A for any A ∈ Θ. Thus, Γ ∪ ∆ is not
L-consistent since Γ∪∆ ` A,¬A by monotonicity. By Fact
2, Γ ∪ ∆ `R(L) A,¬A and thus, ∆ is not conflict-free in
ABFΩ

L(Γ).

With Lemmas 1 and 2 we immediately get:

Lemma 3. Where Γ ⊆ L, {AbΩ \ φ¬ | φ ∈ ΦL(Γ)} =

stb(ABFΩ
L(Γ)) = prf(ABFΩ

L(Γ)) = niv(ABFΩ
L(Γ))

We are now in a position to prove our main result in this
section:
Proof of Theorem 6. In view of Lemma 3 it is enough to
show the theorem for sem = stb.

Ad 3. ABFΩ
L(Γ) `estb A iff Γ ∪ ⋂{∆ | ∆ ∈

stb(ABFΩ
L(Γ))} ` A. By Lemma 1, this is the case

iff Γ ∪ ⋂{(Ω \ φ)¬ | φ ∈ ΦL(Γ)} ` A. Since⋃
ΦL(Γ) =

⋃
ΣL(Γ) (which is easy to see and left

to the reader), this is equivalent to Γ∪ (Ω\⋃ΣL(Γ))¬ ` A.
By compactness, monotonicity and Fact 3, this is equivalent
to Γ ` A ∨ ∨∆ for some finite ∆ ⊆ Ω \ ⋃ΣL(Γ). By
Theorem 2 this is equivalent to Γ `Ω,L

r A.
Ad 1. and 2. Analogous.

Translating Adaptive Logic to ASPIC+

In [16] we have a translation from ABA to ASPIC+. Al-
though this translation requires several assumptions that
ABFΩ

L(Γ) does not satisfy, it turns out that it is easy
to prove that any ABFΩ

L(Γ) can easily be translated to
an assumption-based framework that does satisfy these as-
sumptions.

The underlying idea is basically the same as that for trans-
lating AL into ABA: the plausible knowledge base con-
sists of the negated abnormalities, the strict premises of the
ASPIC+ framework are the premise set Γ and the strict rules

70 relations between assumption-based approaches in nonmonotonic logic and formal argu . . .

of the ASPIC+ framework are the inference rules of the
monotonic core logic. Due to spatial restrictions, we are not
able to present the full technical details of this translation
and the adequacy results here.

7 Translating ASPIC+ to Assumption-Based
Argumentation

In this section we translate ASPIC+ to ABA. Since in ABA
we have no defeasible rules and less attack types than in
ASPIC+ the possibility of this translation is less expected
than the translation in the other direction (as provided in
[16]). In this section we thus offer an answer to the open
question stated in [14] whether such a translation can be
given. Our translation works as follows:

Definition 24. Where AS = (R,) is an argumentation
system in the formal language L with a naming function
N for the rules in R and K = Kn ∪ Ka is a knowledge
base, we translate AS into an assumption-based framework
ABF(AS) = ((L′,R),Kn, Ab,) as follows9

• L′ ⊇ L is such that L′ \ L contains for each r in R a
unique name n(r) and its contrary n(r);10

• R contains each strict rule from R and for each defeasible
rule r : A1, . . . , An ⇒ A it contains11

– the rule n(r), A1, . . . , An → A

– the rule A→ n(r)

• Ab = Ka ∪ {n(r) | r is a defeasible rule in R}
Below we will show that the translation is adequate in

view of the following corollary:

Corollary 1. Where AT = (Arg(AS,K),) is a struc-
tured argumentation framework and sem ∈ {stb, prf},
1. ABF(AS) `∪sem A iff AT `∪sem A

2. ABF(AS) `∩sem A iff AT `∩sem A.
3. ABF(AS) `esem A iff AT `esem A.

In the following we suppose a given argumentation sys-
tem AS and its translation ABF(AS) as in Definition 24.

Definition 25. Where ∆ ⊆ Ab, Arg∆ ⊆ Arg(AS,K) is the
set of all arguments a that use only defeasible assumptions
in ∆, any strict rules, and only defeasible rules r for which
n(r) ∈ ∆.

WhereA ⊆ Arg(AS,K) is a set of arguments,AbA ⊆ Ab
is the set of assumptions consisting of (1) defeasible assump-
tions A ∈ Ka for which prem(a) = A or conc(a) = A for

9For simplicity, we will assume that the contrariness func-
tion of the ASPIC+-framework assigns a unique contrary to ev-
ery A ∈ L. If this assumption is not satisfied, one has to add
Ac

1 → −A, . . . , Ac
n → −A for everyAc

i ∈ Ā, where−A ∈ L′\L
is the contrary of A in ABA, as suggested by [20, p.109].

10Formally: L′ \ L = {n(r) | r in R} ∪ {n(r) | r in R} (where
{n(r) | r in R} ∩ {n(r) | r in R} = ∅). This warrants that, unlike
the names N(r) ∈ L used in AS, the new names n(r) are not
antecedents and consequents of rules in R. We use the new names
to ’simulate’ defeasible rules in ABA.

11We suppose that the rules in R are instances as opposed to
schemes. The translation can easily be adjusted to schemes.

some a ∈ A and (2) of n(r) where r is a defeasible rule
used in some argument in A.

WhereA is a set of arguments in Arg(AS,K),A? denotes
the set ArgAbA .

We sometimes write Aba instead of Ab{a}.

Fact 4. Where A ⊆ Arg(AS,K) is a set of assumptions,
A ⊆ A?.

Lemma 4. Where A 6= n(r) for any r in R and ∆ ⊆ Ab, if
Kn ∪∆ `R A then

1. if A ∈ L, there is an a ∈ Arg∆ such that conc(a) = A,

2. else (if A = n(r)), there is an a ∈ Arg∆ for which
conc(a) = B where B is the consequent of r.

Proof. This can be shown by an induction on the length of a
deduction from Kn ∪∆ to A. Base step: this is trivial since
A ∈ K. Inductive step. We have three possibilities:
1. A is the result of applying a strict rule r in R to
A1, . . . , An, or

2. A is the result of applying the translation of a defeasible
rule r = A1, . . . , An ⇒ A ∈ R to A1, . . . , An and the
rule name n(r), or

3. A = n(r) is the result of applying a rule B → n(r)
where B is the consequent of the defeasible rule r in R.

Ad 2. By the induction hypothesis there are arguments ai
(1 ≤ i ≤ n) s.t. ai ∈ Arg∆ and conc(ai) = Ai. (Note here
that Ai /∈ L′ \ L.) Clearly, a = 〈a1, . . . , an V A〉 ∈ Arg∆
since n(r) ∈ ∆. Ad 1. Analogous. Ad 3. By the induction
hypothesis and sinceB ∈ L, there is an argument a ∈ Arg∆

with conc(a) = B.

The other direction of Lemma 4.1 follows immediately in
view of Definition 25:

Fact 5. Where A ⊆ Arg(AS,K), if there is an a ∈ A with
conc(a) = A then Kn ∪AbA `R A.

Lemma 5. WhereA ⊆ Arg(AS,K), ifA is admissible then
A? is admissible.
Proof. Suppose there are a and b ∈ A? s.t. a attacks b.
For each attack form it is easy to see that then there is a
b′′ ∈ A s.t. a attacks b′′. Take, for instance, rebuttal. Then
conc(a) = B

′
where B′ = conc(b′) for some b′ ∈ sub(b).

Hence, there is a defeasible rule r which is applied in b′ to
produce B′. By the definition of ArgAbA there is an argu-
ment b′′ ∈ A s.t. r is applied to produce conc(b′′) = B′.
For the other attack types (undercuts and undermines) this
is shown in an analogous way. Now, since A is admissi-
ble, there is a c ∈ A s.t. c attacks a. Since by Fact 4,
c ∈ A?, also A? is defended. To show that A? is conflict-
free, assume for a contradiction that a ∈ A?. Since a at-
tacks b′′ ∈ A, A attacks a (due to the admissibility of A).
However, in view of the fact that A and A? make use of the
same defeasible assumptions and defeasible rules and A at-
tacks a in one of the two, this leads to a selfattack in some
argument a′ ∈ A. E.g., suppose A undermines a in some
B ∈ prem(a). Then B ∈ AbA. Hence there is an argument
a′ ∈ A with B ∈ prem(a′) and A attacks a′. Since A is
conflict-free, this is a contradiction.

71

Lemma 6. Where A = A? ⊆ Arg(AS,K), AbA is closed.
Proof. Suppose A = A? and Kn ∪ AbA `R A for some
A ∈ Ab. We have two possibilities: (1) A = n(r) for some
r in R or (2) A ∈ Ka. Ad 1. Since there are no rules with
consequent n(r), n(r) ∈ AbA. Ad 2. By Lemma 4, there is
an a ∈ A? = A with conc(a) = A. Hence, by the definition
of AbA, A ∈ AbA.

Lemma 7. Where A = A? ⊆ Arg(AS,K), if A is admissi-
ble then AbA is admissible.
Proof. SupposeA = A?. By Lemma 6,AbA is closed. Sup-
pose AbA is not conflict-free. Hence, Kn ∪ AbA `R A for
some A ∈ AbA. We use Lemma 4 according to which we
have two cases. Case 1: there is an a ∈ A? s.t. conc(a) = A.
Since A = A?, a ∈ A and A is not conflict-free. Case 2:
A = n(r) and there is an a ∈ A for which conc(a) = B
where B is the consequent of r. Since n(r) ∈ AbA, there
is an argument a′ ∈ A which uses rule r to produce
conc(a′) = B and which is thus rebut-attacked by a. Again,
A is not conflict-free. Thus, we have shown (by contraposi-
tion) that if A is conflict-free then AbA is conflict-free.

Suppose A is admissible, ∆ is closed and attacks AbA.
Hence, Kn ∪ ∆ `R A for some A ∈ AbA. By Lemma
4 we have two cases. Case 1: there is an a ∈ Arg∆ s.t.
conc(a) = A. Hence, A 6= n(r) for any r ∈ R. Clearly,
a attacks A. Since A is admissible, there is a b ∈ A s.t. b
attacks a. Then Abb ⊆ AbA and Kn ∪ Abb `R conc(b).
Thus, Abb attacks Aba and hence AbA attacks ∆.

Case 2: A = n(r) and there is an a ∈ Arg∆ s.t.
conc(a) = B where B is the consequent of r. In this case
there is an a′ ∈ A which uses rule r and hence conc(a′) =
B. SinceA is admissible, there is a c ∈ A that attacks a. But
then ∆c ⊆ AbA attacks ∆a and hence AbA attacks ∆.

Lemma 8. If ∆ ⊆ Ab is admissible, then Arg∆ is admissi-
ble.
Proof. Similar to the previous proof.

Theorem 7. 1. If ∆ is preferred (resp. stable) then Arg∆ is
preferred (resp. stable).

2. If A is preferred (resp. stable) then ∆ is preferred (resp.
stable) for some ∆ ⊇ AbA for which Arg∆ = A.

Proof. Ad.1 Suppose ∆ is preferred. Then, by Lemma 8,
Arg∆ is admissible. Suppose there is an A′ ⊃ Arg∆ that
is admissible, then by Lemma 7, also AbA′ is admissible.
Since ∆ ⊂ AbA′ this is a contradiction.

Ad.2 SupposeA is preferred. By Lemma 5 and since triv-
ially A ⊆ A?, A = A?. By Lemma 7, AbA is admissible.
Now suppose that there is a ∆ ⊃ AbA that is admissible.
Then by Lemma 8, Arg∆ is admissible. ClearlyA ⊆ Arg∆.
By the maximality of A, A = Arg∆.

Due to space limitations we omit the proof for stable ex-
tensions.

Corollary 1 follows directly with Theorem 7, Lemma 4
and Fact 5.

8 Translating Assumption-based
Argumentation to Adaptive Logic

In this section we will translate a fragment of assumption-
based argumentation to adaptive logic.

In the following we write ABAAb
R (Γ)for the assumption-

based framework ((L,R),Γ, Ab,).
For our translation we will use some connectives from

Kleene’s well-known 3-valued logic K3 (see Table 1) and
superimpose them on a logic that is characterised by the
rules inR. This works as follows.

We define the 3-valued logic L3
R semantically in the fol-

lowing way: we superimpose on the language L the oper-
ators ∼ and ∨ (which are supposed to not occur in the al-
phabet of L) resulting in the set of well-formed formulas
L3
R. The operators are characterised by the truth tables in

Table 1.12

A A
1 0
0 1
u u

A ∼A
1 0
0 1
u 1

∨ 1 0 u
1 1 1 1
0 1 0 u
u 1 u u

Table 1: Truth-tables for , ∼ and ∨.

Definition 26. v : L → {0, 1, u} is a function which re-
spects the truth-table for (i.e., v(A) = 1 iff v(A) = 0,
v(A) = 0 iff v(A) = 1, and v(A) = u iff v(A) = u). The
valuation function vM : L3

R → {0, u, 1} is defined induc-
tively as follows:

1. where A ∈ L, vM (A) = v(A)

2. vM (∼A) = 0 iff vM (A) = 1, and vM (∼A) = 1 else.
3. vM (A ∨B) = max(vM (A), vM (B)) where 0 < u < 1.

We writeM |= A iff vM (A) = 1 (so 1 is the only designated
value). We writeL3

R
for the resulting consequence relation.

We now use L3
R as a lower limit logic for an adaptive

logic with the set of abnormalties:

Notation 2. Ω∼Ab = {∼A | A ∈ Ab}.
We translate the rules of R as follows: A1, . . . , An → B

is translated to ∼A1 ∨ . . . ∨ ∼An ∨B.

Notation 3. Where R is a set of rules, we write R∼ for the
set of translated rules.

Our two main representational results in this section are
(to be proven below):

Theorem 8. Where Γ ∪ {A} ⊆ L, and sem = niv,

1. ABAAb
R (Γ) `∪sem A iff Γ ∪R∼ Ω∼Ab,L

3
R

ns A

2. ABAAb
R (Γ) `∩sem A iff Γ ∪R∼ Ω∼Ab,L

3
R

ma A

3. ABAAb
R (Γ) `esem A iff Γ ∪R∼ Ω∼Ab,L

3
R

r A

12In the terminology of [21], Our negation ∼ corresponds to
Bochvar’s ’external negation’ and corresponds to Kleene’s nega-
tion in his K3. Our disjunction ∨ is Kleene’s strong disjunction.
The requirement of supraclassicality for L3

R to serve as a core logic
for an AL is satisfied in view of the 〈∨,∼〉-fragment of L3

R.

72 relations between assumption-based approaches in nonmonotonic logic and formal argu . . .

We can strengthen our result if we suppose that the rule
system based on R satisfies the following requirement:
where Γ ∪ {A} ⊆ L,

EX Where ∆ ⊆ Ab is naive in ABAAb
R (Γ) andA ∈ Ab\∆,

Γ ∪∆ `R A.
This criterion ensures that every naive set is stable.

Theorem 9. Where Γ ∪ {A} ⊆ L: if ABAAb
R (Γ) satisfies

(EX), items 1–3 in Theorem 8 hold for sem ∈ {niv, prf, stb}.
We are now going to prove the two theorems above. The

following notation will be convenient to avoid clutter:
Notation 4. ∆∼ = {∼ A | A ∈ ∆}.

The following facts will be useful below:
Fact 6. Where Γ ∪ ∆ ∪ {A} ⊆ L3

R, (i) A L3
R
∼A, (ii)

Γ L3
R

∨
∆∼ ∨A iff Γ ∪∆ L3

R
A.

L3
R is obviously a compact Tarski logic.

We say that Γ ⊆ L is R-consistent iff there is no A such
that Γ `R A,A.
Lemma 9. Where Γ ∪ {A} ⊆ L,
1. Γ `R A implies Γ ∪R∼ L3

R
A

2. if Γ isR-consistent, Γ ∪R∼ L3
R
A implies Γ `R A.

Proof. Ad 1. Simple induction on the number of proof steps.
We show the induction step. Let M be a model of Γ ∪ R∼.
Suppose A follows by means of the application of a rule
A1, . . . , An → B. By the induction hypothesis, M |=
A1, . . . , An. Also, M |= ∼A1 ∨ . . . ∨ ∼An ∨ B. Hence,
with the truth-tables for ∼ and ∨, M |= B.

Ad 2. Suppose Γ 0R A. We now construct a counter-
model M of Γ ∪R∼ for A as follows. Let

v : B 7→

1 Γ `R B
0 Γ `R B
u else

Note that v(A) ∈ {u, 0} and hence M 6|= A. We have to
show that M is a model of Γ∪R∼. Since Γ isR-consistent,
the definition warrants that the truth-table for is respected
by v. We thus only have to check whether M verifies all
formulas in Γ∪R∼. As for Γ this holds trivially since every
B ∈ Γ is such that Γ `R B and thus v(B) = 1. Let now
A1, . . . , An → B ∈ R. We have to check whether M |=(∨n

i=1∼Ai
)
∨ B. Assume the opposite. Thus vM (Ai) = 1

(1 ≤ i ≤ n) and vM (B) ∈ {0, u}. But then Γ `R Ai
(1 ≤ i ≤ n) and thus Γ `R B. Hence, vM (B) = 1, a
contradiction.

We say that a Γ is L3
R-consistent, if there is a A ∈ L3

R for
which Γ 6L3

R
A.13

Lemma 10. Where Γ ⊆ L, if Γ isR-consistent then Γ∪R∼
is L3

R-consistent.
Proof. Suppose Γ isR-consistent. Then Γ 0R A,A for any
A ∈ L. By Lemma 9, also Γ ∪ R∼ 1L3

R
A,A for any

A ∈ L.
13Or equivalently and analogous to the R-consistency: if there

is no A ∈ LL s.t. Γ 6L3
R
A,¬A.

Lemma 11. Where Γ ⊆ L: ∆∼ ⊆ Ω∼Ab \ φ for some φ ∈
ΦL3
R

(Γ ∪R∼), if ∆ is conflict-free in ABAAb
R (Γ).

Proof. Suppose ∆∼ 6⊆ Ω∼Ab \ φ for all φ ∈ ΦL3
R

(Γ ∪ R∼)

and ∆ ⊆ Ab. By Fact 1, Ω∼Ab \ ∆∼ is not a choice set of
ΣL3
R

(Γ ∪R∼) which means that there is a Θ∼ ∈ ΣL3
R

(Γ ∪
R∼) such that Θ ⊆ ∆. Since Γ∪R∼ L3

R

∨
Θ∼, by Fact 6

also Γ ∪ (Θ \ {A}) ∪R∼ L3
R
∼A for any A ∈ Θ. Hence,

Γ ∪∆ ∪ R∼ is not L3
R-consistent since Γ ∪∆ ∪ R∼ L3

R
A,∼A. Thus by Lemma 10, Γ ∪∆ is not R-consistent and
thus ∆ is not conflict-free.

Lemma 12. Where Γ ⊆ L, ∆∼ = Ω∼Ab \ φ for some φ ∈
ΦL3
R

(Γ ∪R∼), ∆ is naive in ABAAb
R (Γ).

Proof. Suppose ∆∼ = Ω∼Ab\φ for some φ ∈ ΦL3
R

(Γ∪R∼).
We first prove that ∆ is conflict-free. Suppose for a con-

tradiction, there is a B ∈ Ab such that Γ ∪∆ `R B,B. By
Lemma 9, Γ∪∆∪R∼ L3

R
B,B. Hence, Γ∪∆∪R∼ is L3

R-
inconsistent and by Fact 6 and compactness, Γ ∪ R∼ L3

R∨
Θ∼ for some finite Θ ⊆ ∆. Let Θ be⊂-minimal with this

property, so that Θ∼ ∈ ΣL3
R

(Γ ∪ R∼). Since φ ∩ Θ∼ = ∅
this is a contradiction to the fact that φ ∈ ΦL3

R
(Γ ∪R∼).

We now show that ∆ is closed. Assume for a contradiction
that Γ ∪ ∆ `R A for some A ∈ Ab \ ∆. By Lemma 9,
Γ∪∆∪R∼ L3

R
A. Note that ∼A ∈ φ. By Fact 1, there is

a Θ∼ ∈ ΣL3
R

(Γ ∪ R∼) for which {∼A} = φ ∩ Θ∼. Since
Γ∪R∼ L3

R

∨
Θ∼, by Fact 6, Γ∪R∼∪Θ\{A} L3

R
∼A.

By the monotonicity of L3
R, Γ ∪ R∼ ∪∆ L3

R
∼A. Thus,

Γ∪∆∪R∼ is not L3
R-consistent which implies by Lemma

10 that Γ ∪∆ is not R-consistent. This contradicts the fact
that ∆ is conflict-free.

The following theorem follows immediately in view of
Lemma 11 and Lemma 12:
Theorem 10. Where Γ ⊆ L, ∆ is a naive extension of
ABAAb

R (Γ) iff ∆∼ = Ω∼Ab \φ for some φ ∈ ΦL3
R

(Γ∪R∼).
If we suppose requirement (EX), we can also prove The-

orem 9.
Lemma 13. Where Γ ⊆ L, R satisfies (EX), and ∆∼ =
Ω∼Ab \ φ for some φ ∈ ΦL3

R
(Γ ∪ R∼), ∆ is stable in

ABAAb
R (Γ).

Proof. Suppose ∆∼ = Ω∼Ab\φ for some φ ∈ ΦL3
R

(Γ∪R∼).
In view of Lemma 12 we only need to show that ∆ attacks
allB ∈ Ab\∆. Let thusB ∈ Ab\∆. By (EX), Γ∪∆ `R B.
Thus, ∆ attacks B.

The following Corollary follows immediately in view of
Theorem 10 and Lemma 13.
Corollary 2. WhereR satisfies (EX), each naive set is stable
in ABAAb

R (Γ).
In [7], the following was defined resp. proven:

Definition 27. An assumption-based framework is normal
iff every naive set of assumptions is stable.
Theorem 11. For any normal assumption-based frame-
work, for any set of assumptions ∆ ⊆ Ab, ∆ is naive iff
∆ is stable iff ∆ is preferred.

73

Corollary 3. If an assumption-based framework satisfies
(EX), Γ ⊆ L, ∆ is a preferred, stable and naive extension of
ABAAb

R (Γ) iff ∆∼ = Ω∼Ab \φ for some φ ∈ ΦL3
R

(Γ∪R∼).

We are now in a position to prove our two main theorems
in this section.
Proof of Theorems 8 and 9. [Theorem 9.1, ⇐]: Sup-
pose that Γ ∪ R∼ Ω∼Ab,L

3
R

ns A. By Theorem 3, there
is a ∆∼ ⊆ Ω∼Ab \ φ for some φ ∈ ΦL3

R
(Γ ∪ R∼) s.t.

Γ ∪ R∼ L3
R
A ∨ ∨∆∼. By the monotonicity of L3

R and
Fact 6, Θ ∪ Γ ∪ R∼ L3

R
A where Θ∼ = Ω∼Ab \ φ. By

Lemma 13, Θ is stable. Thus, Γ ∪ Θ is R-consistent. By
Lemma 9, ABAAb

R (Γ) `∪sem A.
The other direction and the other cases are shown analo-

gously.

9 Conclusion
In this paper we provided translations between several
prominent systems in nonmonotonic logic (see Fig. 1 for an
overview). In this conclusion we discuss some benefits.

In view of the translation of ALs into ABA we know that
ALs can be understood as forms of formal argumentation.
In view of the fact that ALs are equi-expressive with the
syntactically characterised preferential semantics in Sec. 3
and Makinson’s default assumptions, the same can be said
about the latter two frameworks. Since a broad variety of
defeasible reasoning forms in a wide range of application
contexts have been explicated within the ALs family (see
Sec. 2), all these reasoning forms are now available in the
domain of formal argumentation. This may lead to further
refinements. For instance, once embedded in ASPIC+ we
gain rich resources to express preferences and priorities.

In view of the other direction, from a subclass of ABA to
ALs, we know that this class can be understood in terms of
the model-theoretic tools provided by KLM-style preferen-
tial semantics or, alternatively, as consistency management
in terms of maximal consistent subsets as provided by de-
fault assumptions. This also means that meta-theoretic in-
sights from, for instance, ALs become available for this sub-
class of ABA. For example, the computational complexity
of ALs is well-understood [23, 15]. Moreover, properties of
the AL consequence relations apply to this class of ABA.
For instance, we know that adaptive consequence relations
are cumulative (in the notation of Section 2, where AL is an
adaptive logic, Γ,∆, {A} ⊆ L, and Γ `AL B for all B ∈ ∆,
Γ `AL A iff Γ ∪ ∆ `AL A). For a study of meta-theoretic
properties of ALs see [4, 19]. Finally, besides the available
dialogue-based methods to model argumentative reasoning
processes (e.g. [9]), now the dynamic proof theory of adap-
tive logics can also be used for this purpose.

Finally, we complete the circle between ABA and
ASPIC+ (without priorities/preferences) by providing a
translation from the latter to the former, whereas the other
direction has been presented in [16]. As a side-product this
provides a way to phrase the defeasible rules of ASPIC+

as strict rules. This shows that the strict fragment of
ASPIC+ (without strict rules and thus without rebuttals
and undercuts) is equi-expressive with full ASPIC+. Such

insights are conceptually interesting and may simplify
future meta-theoretic investigations into ASPIC+.

In future work we intend to generalise our investigations
to approaches with priorities and preferences as provided in
ASPIC+ and some generalisations of ALs. An interesting
question will be, for instance, whether full ASPIC+ is trans-
latable into lexicographic ALs [19, ch.5] or whether the lat-
ter can be translated to ABA or ASPIC+.

References
[1] L. Amgoud and P. Besnard. Logical limits of abstract argu-

mentation frameworks. JANCL, 23(3):229–267, 2013.

[2] O. Arieli and C. Straßer. Sequent-based logical argumenta-
tion. A&C, 6(1):73–99, 2015.

[3] D. Batens. Inconsistency-adaptive logics. Logic at Work,
Essays dedicated to the memory of Helena Rasiowa, pages
445–472, 1999.

[4] D. Batens. A universal logic approach to adaptive logics.
Logica universalis, 1(1):221–242, 2007.

[5] P. Besnard, A. Garcia, A. Hunter, S. Modgil, H. Prakken,
G. Simari, and F. Toni. Introduction to structured argumenta-
tion. A&C, 5(1):1–4, 2014.

[6] P. Besnard and A. Hunter. A logic-based theory of deductive
arguments. AI, 128(1):203–235, 2001.

[7] A. Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni. An
abstract, argumentation-theoretic approach to default reason-
ing. AI, 93(1):63–101, 1997.

[8] P. M. Dung. On the acceptability of arguments and its funda-
mental role in nonmonotonic reasoning, logic programming
and n-person games. AI, 77:321–358, 1995.

[9] P. M. Dung, R. A. Kowalski, and F. Toni. Dialectic proof
procedures for assumption-based, admissible argumentation.
AI, 170(2):114–159, 2006.

[10] P. M. Dung, R. A. Kowalski, and F. Toni. Assumption-based
argumentation. In Argumentation in Artificial Intelligence,
pages 199–218. Springer, 2009.

[11] A. J. Garcı́a and G. R. Simari. Defeasible logic programming:
An argumentative approach. TPLP, 4(1+ 2):95–138, 2004.

[12] S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic
reasoning, preferential models and cumulative logics. AI,
44(1):167–207, 1990.

[13] D. Makinson. Bridges from classical to nonmonotonic logic.
College Publications, 2005.

[14] S. Modgil and H. Prakken. The aspic+ framework for struc-
tured argumentation: a tutorial. A&C, 5(1):31–62, 2014.

[15] S. P. Odintsov and S. O. Speranski. Computability issues for
adaptive logics in multi-consequence standard format. SL,
101(6):1237–1262, 2013.

[16] H. Prakken. An abstract framework for argumentation with
structured arguments. Argument and Computation, 1(2):93–
124, 2010.

[17] N. Rescher and R. Manor. On inference from inconsistent
premisses. Theory Decis, 1(2):179–217, 1970.

[18] Y. Shoham. Reasoning about change. Technical report, Yale
Univ., New Haven, CT (USA), 1987.

[19] C. Straßer. Adaptive Logics for Defeasible Reasoning.
Springer, 2014.

74 relations between assumption-based approaches in nonmonotonic logic and formal argu . . .

[20] F. Toni. A tutorial on assumption-based argumentation. A&C,
5(1):89–117, 2014.

[21] A. Urquhart. Basic many-valued logic. In Handbook of philo-
sophical logic, pages 249–295. Springer, 2001.

[22] F. Van De Putte. Default assumptions and selection functions:
a generic framework for non-monotonic logics. In MICAI
2013, pages 54–67. Springer, 2013.

[23] P. Verdée. Adaptive logics using the minimal abnormality
strategy are π1

1-complex. Synthese, 167(1):93–104, 2009.

75

Ordinal Conditional Functions for Nearly Counterfactual Revision

Aaron Hunter
BCIT

Burnaby, BC, Canada
aaron hunter@bcit.ca

Abstract

We are interested in belief revision involving conditional
statements where the antecedent is almost certainly false. To
represent such problems, we use Ordinal Conditional Func-
tions that may take infinite values. We model belief change
in this context through simple arithmetical operations that al-
low us to capture the intuition that certain antecedents can
not be validated by any number of observations. We frame
our approach as a form of finite belief improvement, and we
propose a model of conditional belief revision in which only
the “right” hypothetical levels of implausibility are revised.

Introduction
The theory of belief change is concerned with the way agents
incorporate new information. Typically, the focus is on
new information that is given as a propositional formula.
In this paper, we are concerned with situations where an
agent needs to revise by a conditional where the antecedent
is almost certainly false. More precisely, we consider an-
tecedents that will not be believed given any finite amount
of “regular” supporting evidence. We represent the degree of
belief in such formulas using Ordinal Conditional Functions
that may take infinite values, and we provide an approach to
conditional revision based on basic ordinal arithmetic.

This paper makes several contributions to existing work
on belief change.1 First, we demonstrate that a simple al-
gebra of belief change in the finite case extends naturally to
the infinite case, giving a form of belief improvement. In
the process, we demonstrate that there are natural examples
in commonsense reasoning where multiple levels of infinite
implausibility are actually useful. In particular, we introduce
a natural approach to revision by conditional statements with
little in the way of new formal machinery.

Motivating Example
Consider the following claims:

1. heavy: Your dog is overweight.

2. fly: Your dog can fly.

3. hollow|fly: If your dog can fly, then it has hollow bones.

1This paper contains results that have been published in
(Hun15) and (Hun16).

The first two claims are simple declarative statements. But
note that there is a clear difference in the amount of evi-
dence needed to convince the agent to believe each claim.
For (1), it presumably takes some finite number of reports
from a trusted source. For (2), it seems unlikely that any fi-
nite number of reports would be convincing. This statement
is almost certainly false, though it is possible to imagine a
situation that would convince an agent to believe it.

The third statement is a conditional with a highly unlikely
antecedent. Nevertheless, the perceived “impossibility” of
(2) does not mean that (3) is free of content. Revision by (3)
should change an agent’s beliefs in a counterfactual sense;
they may need to change their beliefs about hollow bones in
some hypothetical scenario. Moreover, if ever the notion of
flying dogs becomes believable, then this report will take on
significance at the level of factual beliefs. In this paper, we
refer to claims such as (3) as nearly counterfactual. We will
provide a formal characterization of such claims, as well as
a suitable approach to revision.

Preliminaries

Belief Revision

Belief revision is the belief change that occurs when new
information is presented to an agent with some prior, possi-
bly contradictory, set of beliefs. We assume an underlying
propositional signature P. An interpretation over P is called
a state, while a logically closed set of formulas over P is
called a belief set. A belief revision operator is a function
that combines the initial belief set and a formula to produce
a new belief set.

Formal approaches to belief revision typically require an
agent to have some form of ordering or ranking that gives
the relative plausibility of possible states. For example, in
the well-known AGM approach, total pre-orders over states
are used to represent the perceived likelihood of each state
(AGM85; KM92). Unfortunately, this approach does not
handle the problem of iterated belief revision. Related work
has addressed iterated revision by explicitly specifying how
the ordering changes, rather than just the belief set (DP97;
BM06; JT07).

77

Ordinal Conditional Functions
An ordinal conditional function (OCF) is a function that
maps each state to an ordinal (Spo88; Wil94). In this ap-
proach, strength of belief is captured by ordinal precedence.
Hence, if r is an OCF and r(s) < r(t), then s is a more
plausible state than t. There is an obvious advantage to this
approach in that a ranking function is clearly more expres-
sive than a total pre-oder.

While the orginal definition allows the range of an OCF
to be the class of all ordinals, in existing work it is common
to restrict the range to the natural numbers, possibly with an
additional symbol∞ representing impossibility. In this pa-
per, we will actually use a slightly larger range; so we need
to briefly review ordinal arithmetic.2 For our purposes, it is
sufficient to note that ordinals are actually sets defined by
an “order type.” The finite ordinals are the natural numbers.
The order type of the natural number n is unique, because
it is the only ordinal that has exactly n − 1 preceding ordi-
nals. The first infinite ordinal is ω, the set of all natural num-
bers. Every countably infinite subset of the natural numbers
is order-isomorphic to ω.

It is easy to construct a countably infinite set that is not
order isomorphic to ω: just add another symbol ∞ at the
end that is larger than every natural number. The ordinal that
defines the order type of this set is written ω + 1. Similarly,
there exists a distinct ordinal ω + n for any natural number
n. And if we add a complete copy of the natural numbers,
then we have the ordinal ω+ω which is normally written as
ω · 2. We can procede in this manner indefinitely to define
a countably infinite sequence of ordinals. By taking powers,
we can get even more order types; we will not delve further
into this topic.

Ordinal addition can be understood in terms of the infor-
mal discussion above. Given ordinals α and β, the ordinal
α+ β has the order type obtained by taking a set with order
type α and then appending a set with order type β where all
the elements of β follow the elements of α in the underlying
ordering. For finite ordinals, this coincides with the usual
notion of addition. For infinite valued ordinals it does not.
Note for example that 1 +ω = ω; adding a number that pre-
cedes 0 does not change the order type, because the resulting
structure is isomorphic to the natural numbers. On the other
hand ω + 1 6= ω. So ordinal addition is not commutative.
It is also worth noting that ordinal subtraction is, in general,
not well defined. In particular, it is not possible to define
subtraction by ω.

Belief Change as Ordinal Arithmetic
Although our goal is to address revision by conditionals, we
first introduce a simple approach to belief change based on
the addition of ordinals. This will allow us to precisely de-
fine the notion of a nearly counterfactual statement, which is

2It is beyond the scope of this paper to give a complete treat-
ment of infinite ordinals, and ordinal arithmetic. In the discussion
here, we skip over fundamental set theory, and the fact that order-
types are defined in terms of set-containment. We refer the reader
to (Dev93) for an excellent introduction.

Figure 1: Visualizing ω2

important for the class of conditionals that we wish to con-
sider.

Restricted Domains
The following definition allows us to define conditional
functions over any set of ordinals.

Definition 1 Let S be a non-empty set of states and let Γ be
a collection of ordinals. A Γ-CF (Γ conditional function)
over S is a function r : S → Γ such that r(s) = 0 for some
state s.

Note that the definition of Γ-CFs does not actually specify
that Γ is a set, because we do not wish to specify the under-
lying set theory in detail.

Several special cases are immediate:

• Spohn’s ordinal conditional functions are Ω-CFs, where
Ω is the collection of all ordinals.

• The class of ω-CFs coincides with the finite valued rank-
ing functions common in the literature.

• The class of (ω + 1)-CFs is the set of ranking functions
that can take finite values, as well as the single “impossi-
ble” plausiblity value∞. This is essentially equivalent to
the possibilistic logic framework of (DP04), that uses the
“necessity measure” of 0.

In this paper, we are primarily interested in the class of ω2-
CFs. Note that ω2 can be specified as follows:

ω2 =
⋃
{ω · k + c | k, c ∈ ω}.

Hence, every element of ω2 can be written as ω · k + c for
some k and c. We think of these conditional functions as
having countably many infinite levels of implausibility. A
picture of ω2 is shown in Figure 1.

If r is a Γ-CF, we write

Bel(r) = {x | r(x) = 0}.
The degree of strength of a conditional function r is the least
n such that n = r(v) for some v 6∈ Bel(r). Hence, the
degree of strength is a measure of how difficult it would be
for an agent to abandon the currently believed set of states.

Finite Arithmetic on Conditional Functions
In the finite case, belief change can be captured through ad-
dition on ranking functions. Some variant of the following
definition has appeared previously in published work by sev-
eral authors; it is restated here and translated to our termi-
nology.

78 ordinal conditional functions for nearly counterfactual revision

Definition 2 Let r1 and r2 be ω-CFs over S, and let m be
the minimum value of r1 + r2. Then r1+̄r2 is the function
on S defined as follows:

r1+̄r2(x) = r1(x) + r2(x)−m.
It is easy to check that this operation is associative, commu-
tative, and that every element is invertible in the sense that,
for each r there is an r′ such that r+̄r′ = 0. Therefore, in
terms of algebra, we say that the class of ω-CFs is an abelian
group under +̄.

Note that Spohn’s conditionalization can be seen as a spe-
cial case of this algebra on ranking functions. Let r1 be a
finite plausibility function representing the initial beliefs of
an agent. Let φ be a formula, let d be a positive integer, and
let r2 be the ranking function defined as follows:

r2(s) =

{
0 if s |= φ
d otherwise

Then r1+̄r2 is equivalent to Spohn’s conditionalization of r1

by φ with strength d. Similarly, if r2 takes only two values
and the degree of strength of r2 is strictly larger than the
degree of strength of r1, then r1+̄r2 is AGM revision.

This approach does not extend to larger classes of ordi-
nals.

Proposition 1 Let β be an ordinal such that ω ∈ β. Then +̄
is not well-defined over the class of β-CFs.

The problem is that subtraction is not defined for all pairs of
(infinite) ordinals.

Example Consider the motivating example. We can define
the following (ω + 1)− CFs:

r1(s) =

{
0 if s |= {fly}
ω otherwise

r2(s) =

{
ω if s |= {fly}
0 otherwise.

Normalized addition of r1 and r2 requires us to calculate
ω− ω. But this subtraction is not defined, so the calculation
can not be completed.

This problem could be avoided by removing the normal-
ization, but the result would no longer be an OCF. If we want
to work with ranking functions that are closed under some
form of addition, then we must either modify the definition,
or we must relax the constraint that the pre-image of 0 is
non-empty. We opt for the former.

Finite Zeroing
We define an algebra over ω2-CFs based on finite zeroing.
The following relation will be useful in proving results. In
the definition, and in some future results, it is useful to con-
sider functions over ordinals that do not necessarily take the
value 0 for any argument. We use the general term Γ ranking
to refer to an arbitrary function from S to Γ.3

3Konieczny refers to this kind of OCF as a free OCF.(Kon09)

Definition 3 For Γ rankings r1 and r2, we write r1 ∼ r2

just in case the following condition holds for every pair of
states s, t

r1(s) < r1(t) ⇐⇒ r2(s) < r2(t).

Clearly, ∼ is an equivalence relation.
The intuition behind finite zeroing is that each conditional

function can be categorized by its minimum value, in a man-
ner that is useful for revision. Given any ω2 ranking r, let
min(r) denote the minimum value r(s). Note that a min-
imum is guaranteed by the fact that the ordinals are well-
ordered.

Definition 4 Let r be an ω2 ranking with min(r) = ω ·k+c.
Then k is the degree of r and c is the finite shift, written
deg(r) and fin(r) respectively.

We can use the degree and the finite shift to define the fol-
lowing operation.

Definition 5 Let r be an ω2 ranking with deg(r) = k and
fin(r) = c. Define r̄ as follows. Let s be a state with
r(s) = ω ·m+ p.

1. If m > k, then r̄(s) = ω · (m− k) + c.
2. If m = k, then r̄(s) = (p− c).

We call r̄ the finite zeroing of r. Intuitively, elements at the
“lowest level” are normalized to zero and elements at higher
levels are shifted down by the degree of r. The following
result is easy to prove.

Proposition 2 If r is an ω2 ranking, then r̄ is a ω2-CF and
r ∼ r̄.

Hence, the finite zeroing of any ranking is an equivalent ω2-
CF. We can now extend the definition of ∗ to ω2-CFs.

Definition 6 Let r1, r2 be ω2-CFs. Then

r1 ∗ r2 = r1 + r2.

Using this definition, ∗ is consistent with +̄ for ω-CFs.
Hence, ∗ can capture standard belief revision operators (e.g.,
AGM, DP) by restricting to finite values and setting the de-
gree of strength of each function appropriately. This is the
natural extension of revision, therefore, to the case that al-
lows infinite plausibility values.

Example The motivating example over {heavy, fly} can
be captured by the following function:

r(s) =

{
ω if s |= fly
10 if s |= heavy ∧ ¬fly
0 otherwise

We let ∗n to denote a finite iteration of the ∗ operator. Sup-
pose that, for each V ∈ {heavy, fly}, rV is an OCF such
that rV (s) = 2 if and only if s 6|= V . The following are
immediate:

• r ∗n rheavy(s) = 0 iff n ≥ 5.

• r ∗n rfly(s) 6= 0 for any n.

79

Hence, it takes 5 reports to convince the owner that their
dog is overweight. No finite number of reports will convince
them that the dog can fly.

In the ω2 case, the algebra obtained is not identical to the
finite case.

Proposition 3 The class of ω2-CFs is a non-abelian group
under ∗. (i.e. it is closed, associative, and every element has
an inverse, but it is not commutative).

The fact that ∗ is not commutative has interesting conse-
quences, as illustrated in the following example.

Example Assume again that the vocabulary contains the
predicates {heavy, fly}. Define

r1(s) =

{
ω if s |= fly
0 otherwise

r2(s) =

{
0 if s |= ¬heavy ∧ fly
1 if s |= heavy ∧ fly
2 otherwise.

Hence, r1 says that an agent believes dogs can not fly; more-
over the agent essentially believes that a flying dog is an im-
possibility. On the other hand, r2 says that an agent believes
that light dogs can fly - although the the strength of belief in
this claim is only finite. Moreover, r2 gives an ordering over
less plausible states as well. Note that both r1 and r2 can be
either an initial belief state or an observation. The following
calculations are immediate.

r1 ∗ r2(s) =

{
ω if s |= ¬heavy ∧ fly
ω + 1 if s |= heavy ∧ fly
0 otherwise.

r2 ∗ r1(s) =

{
ω if s = {fly}
0 otherwise.

What is the significance of this example? It shows that
conditional beliefs from an observation can be maintained
at higher plausibility levels. In both cases, the underlying
agent will not believe dogs can fly following revision. But
the first revision allows the ordering of states to be refined
somewhat at the conditional level. The second revision, on
the other hand, washes away the finite level distinctions in
the original belief set. This is similar to AGM revision in the
sense that recent information seems to carry some particular
weight. However, the infinite jumps in plausibility outweigh
the preference for recency.

Nearly Counterfactual Reasoning
Motivation
In this section, we demonstrate how infinite-valued ordinal
conditional functions can be useful for reasoning about con-
ditional statements.

Example We return to the flying-dog example. Suppose
that we initially believe ¬fly and ¬hollow; in other words,

we believe that dogs do not fly and that dogs do not have hol-
low bones. Now suppose we are told that flying dogs have
hollow bones. Informaly, we want to revise by the condi-
tional statement (hollow|fly).

Note that (hollow|fly) actually does not give any new
information about dogs. This revision should not change
the relative ordering of any worlds with a finite strength of
belief. However, it does result in a change of belief. If one is
later convinced of the existence of flying dogs, then the fact
about hollow bones should be incorporated.

We refer to the reasoning in the preceding example as
nearly-counterfactual revision. It is essentially a form of
counterfactual reasoning, in which hypothetical worlds are
considered in isolation. At the same time, however, we keep
a form of conditional memory at higher ordinal levels. This
is not only useful for perspective altering revelations, but we
argue it can also be useful for analogical reasoning.

One important feature that is typically taken as a require-
ment for conditional reasoning is the Ramsey Test. In the
context of revision by conditional statements, Kern-Isberner
formulates the Ramsey Test as follows: when revising by a
conditional, one would like to ensure that revision by (ψ|φ)
followed by a revision by φ should guarantee belief in ψ
(Ker99). We suggest that this formulation needs to be re-
fined in order to be used in the case where infinite ranks are
possible.

In the case of the flying dog, one is quite likely to accept
the conditional (hollow|fly) based on a single report with
finite strength. However, a single report of fly with finite
strength will not be believed. If the antecedent of the con-
ditional is “very hard” to believe, then we should not expect
the Ramsey Test to hold without some additional condition
on the strength of the subsequent report. The problem, in a
sense, is that the notion of believing a conditional is quite
different than the notion of believing a fact. In order to be-
lieve (hollow|fly), we simply need to keep some kind of
record of this fact for the unlikely case where we discover
that flying dogs happen to exist. On the other hand, in order
to believe fly, we really need to make a significant change
in our current world view.

Levels of Implausibility
Approaches to counterfactual reasoning are typically in-
spired to some degree by Lewis, who indicates that the truth
of a counterfactual sentence is determined by its truth in al-
ternative worlds (Lew73). We can represent this idea with
ω2-CFs. At each limit ordinal ω · k, we essentially have
an entirely new plausibility ordering. As k increases, each
such ordering represents an increasingly implausible world.
However, a sufficiently strong observation can force our be-
liefs to jump to any of these unlikely worlds. As such, these
are not truly counterfactual worlds, because we admit the
possibility that they may eventually be believed.

The important property that we can capture with ω2-CFs
is the following: there are some formulas that may be true,
yet we can not be convinced to believe them based on any
finite number of pieces of “weak evidence.” This allows us

80 ordinal conditional functions for nearly counterfactual revision

to give the following formal definition of the term nearly
counterfactual.
Definition 7 Let r be an OCF. A formula φ is nearly coun-
terfactual with respect to r just in case there is no ω-CF r′

such that Bel(r ∗ r′) |= φ.
The following is an immediate consequence of this defini-
tion.
Proposition 4 If φ is nearly counterfactual with respect to
r, then there is no finite sequence r1, . . . , rn of ω-CFs such
that Bel(r ∗ r1 ∗ · · · ∗ rn) |= φ.
We introduce some useful notation.
Definition 8 Let φ be a formula. An OCF r is a φ-
strengthening iff Bel(r) = {s | s |= φ}.
So, a φ-strengthening is just a ranking function where the
minimal states are exactly the models of φ. For any formula
φ, let (φ, n) be the φ-strengthening of φ where models of φ
have plausibility 0 and every other state has plausibility n.

Definition 9 Let r be an ω2-CF. For any limit ordinal ω · k,
let rk be the following partial function:

rk(s) =

{
r(s), if r(s) = ω · k + c for some c
undefined otherwise

Hence, rk is just the restriction of r to those states with plau-
sibility values at level k. We say that φ is believed at level
k if {s | s ∈ min(rk)} |= φ. Let poss(φ) denote the set of
natural numbers k such that s |= φ for some s in the domain
of rk.

We can now introduce a form of strengthening with nearly
counterfactual conditionals. In the definition, given an ω2-
CF r, we let deg(s) denote the value k such that r(s) =
ω · k + c.
Definition 10 Let r be an ω2-CF and let ψ, φ be formulas
where φ is nearly counterfactual with respect to r. Let n ∈
ω.

r ∗ (n, ψ|φ)(s) =

{
r(s), if deg(s) 6∈ poss(φ)
r ∗ (ψ, n)(s) otherwise

We call this function the n-stengthening of ψ conditioned on
φ. This function finds all levels of r where φ is possible, and
then strengthens ψ at only those levels.

Example Let r again be the plausibility function

r(s) =

{
ω if s |= fly
10 if s |= heavy ∧ ¬fly
0 otherwise

It is easy to verify that fly is nearly counterfactual with re-
spect to r. Now suppose that we extend the vocabulary to
include the predicate symbol hollow. Define a new function
r′ as follows:

r′(s) =

{
r(s), if s 6|= hollow
r(s) + 1, if s |= hollow

This just says that we initally believe our dog does not have
hollow bones; however, it is not particularly implausible. It
follows that:

• r′(s) = ω if s |= fly ∧ ¬hollow.
• r′(s) = ω + 1 if s |= fly ∧ hollow.
From these results, it follows that:
• r′ ∗ (2, hollow|fly)(s) = r′(s), if s 6|= fly.
• r′ ∗ (2, hollow|fly)(s) = ω, if s |= fly ∧ hollow.
• r′ ∗ (2, hollow|fly)(s) = ω + 1, s |= fly ∧ ¬hollow.
So, roughly speaking, after strengthening by (hollow|fly),
we now believe that hollow bones are more plausible in all
hypothetical situations where we believe flying dogs are pos-
sible.

Note that plausibility of a state is only changed at levels
where φ is considered possible. Since the definition is only
applied to nearly counterfactual conditions, this means that
only hypothetical states are affected by the strengthening.

It remains to move from conditional strengthening to con-
ditional revision. Recall that, for any ω2-CF with min(r) =
ω · k + c, we write fin(r) = c.
Definition 11 Let r be an ω2-CF and let ψ, φ be formulas
where φ is nearly counterfactual with respect to r.

r ∗ (ψ|φ)(s) =

{
r(s), if deg(s) 6∈ poss(φ)
r ∗ (ψ, fin(rk))(s) if r(s) = ω · k + c

Hence, for revision, we strengthen belief in ψ by the least
value that will ensure ψ is believed at level k.

Under this definition, we satisfy a modified form of the
Ramsey Test.
Proposition 5 Let r be an ω2-CF and let s be a state with
r(s) = ω · k + c. If r′ is an ω2-CF with degree of strength
larger than k and Bel(r′) |= φ, then

Bel((r ∗ (ψ|φ)) ∗ r′) |= ψ.

Hence, if we revise by (ψ|φ) followed by an OCF with “suf-
ficiently strong” belief in φ, then ψ will be believed.

Relation to Existing Work
Infinite Plausibility Values
There has been related work on the use of infinite valued
ordinals in OCFs. In particular, Konieczny defines the no-
tion of a level of belief explicitly in terms of limit ordi-
nals(Kon09). In this work, different “levels” are used to rep-
resent beliefs that are independent in a precise sense. The
lowest level is used for representing an agents actual beliefs
about the world, whereas higher levels are used to represent
integrity constraints. Our approach here is different in that
we explicitly use the ordering on limit ordinals to represent
infinite leaps in plausibility. This work is also distinguished
by the fact that we use ordinal arithmetic on a small class of
ordinals to define a simple algebra of belief change.

Belief Improvement
The success postulate (K ∗φ ` φ) of the AGM framework is
clearly incorrect in cases where evidence is additive. That is
to say, there are situations where a single observation is not
sufficient to convince an agent to believe a particular fact.

81

Improvement operators (KP08) are belief change operators
that address this issue by introducing a new set of postulates.
The most important postulate states that an improvement op-
erator ◦ must have the property that:

(I1) There exists n ∈ N such that B(Ψ ◦n φ) ` φ.

Here Ψ is an epistemic state, and B(·) maps an epistemic
state to the minimal elements of the underlying ordering.
Hence, an improvement operator has the property that an
agent will be convinced to believe φ after a finite number
of improvements. The remaining postulates for a weak im-
provement operator are essentially the DP postulates applied
to the operation ◦n obtained from (I1). We refer the reader
to (KP08) for the complete list of postulates.

We define an analog of (I1) as follows. If rφ denotes a
φ-strengthening, we can express the condition as follows.

(I∗) There exists n ∈ N such that Bel(r ∗n rφ) |= φ.

The truth of this property depends on the degrees of strength
of the functions.

Proposition 6 If r is an ω-CF and rφ is a φ-strengthening
with finite strength, then I∗ holds.

For an epistemic state Ψ defined by≺Ψ, let rΨ be the canon-
ical representation of Ψ.4 Define ◦n such that Ψ ◦ φ is ob-
tained by taking the ordering induced by rΨ ∗ r(φ, n).

Proposition 7 For any n ∈ N, the operator ◦n is a weak
improvement operator.

We call ◦n a finite improvement operator, because the de-
gree of strength is finite. This result is essentially a corollary
of Proposition 6, and it suggests that our ∗ operation based
on normalized addition is actually the natural extension of
improvement to the setting of ω-CFs.

The advantage of infinite plausibility values is that they
give us greater flexibility in modelling improvement.

Proposition 8 If r is an ω2-CF and rφ is a φ-strengthening
with finite strength, then I∗ does not hold.

This result essentially states that (I1) is not a sound property
for ∗ if we allow infinite plausibility values. This distinction
can be seen in our running example. There is no finite num-
ber of improvements that will force the agent to believe that
dogs can fly.

It is actually difficult to express the analog of Proposition
7 in the context of ω2-CFs, because a total pre-order over
states can not capture the “infinite jumps” in plausibility en-
coded by ω2 ordinal ranks. But it is possible to define a cor-
respondence between sequences of orderings and ordinals in
ω2.

Definition 12 Let r be an ω2-CF where max(r) = ω · d+ b
for some d, b. For i ≤ d, let ri denote the function defined
as follows:

1. domain(ri) = {s | r(s) = ω · i+ c}.
2. If r(s) = ω · i+ c, then ri(s) = c.

The following propositions are immediate.

4If s is in the nth level of Ψ , then rΨ(s) = n

Proposition 9 Each ri is a ω ranking, and there exists an
ω-CF such that r′i ∼ ri
Proposition 10 For any ω2-CF r over a vocabulary P with
deg(r) = d, there is an extended vocabulary P1 and a se-
quence r0, . . . , rd of ω-CFs such that, for each i ≤ d, the
ri is equivalent (i.e. ∼) to the restriction of r to ordinals of
degree i.

This result is proved by just extending the vocabulary appro-
priately with propositional variables that make each infinite
jump in the ordinal value definable. By breaking r into a set
of ω-CFs, it follows that (I∗) holds at level d when rφ has
degree of strength ω · d. Therefore, belief change by nor-
malized addition on ω2-CFs can really just be seen as a fi-
nite collection of improvements as each level. The important
point, however, is that no finite sequence of improvements
at level d will ever impact the actual beliefs at lower levels.

Conditional Belief Revision
Conditional belief revision was previously addressed by
Kern-Isberner, who proposes a set of rationality postulates
for conditional revision (Ker99). A concrete approach to
conditional revision is also proposed, through the following
ω-CF :

r ∗ (ψ|φ)(s) =

{
r(s)− r(ψ|φ), if s |= φ ∧ ψ
r(s) + α+ 1, if s |= φ ∧ ¬ψ
r(s), if s |= ¬φ

where α = −1 if r({φ, ψ}) < r({φ}), and α = 0 other-
wise. This operation satisfies all of the postulates for con-
ditional revision, as well as the Ramsey Test. We remark,
however, that this approach is not well-defined if we allow
infinite plausibility values because of the ordinal subtraction
on the right hand side. We suggest that this is not just a
formal artefact of the theory; conditionals that are ”almost
certainly” false actually must be treated slightly differently.

In our approach, we essentially require the evidence for
φ to be substantially stronger than the evidence for the con-
ditional. We suggest that our beliefs following conditional
revision should be changed in sort of an infinitesimally small
way. While our beliefs about the actual world do not change,
our beliefs about some (nearly) impossible world do, in fact,
change.

Note that it is actually possible to reconcile our approach
with Kern-Isberner’s approach, by using the conditional re-
vision above on each level rk of the initial OCF r. At
present, we are using a simple strengthening on each level,
which actually flattens the plausibility structure after ordi-
nal addition. A combined approach could respect the infi-
nite jumps in plausibility, while satisfying the postulates for
conditional revision at each level. We leave an investigation
of this combined approach for future work.

Discussion
Conclusion
In this paper, we have explored the use of infinite ordinals
for reasoning about belief change and conditional reasoning.
We have shown that allowing plausibility values to range

82 ordinal conditional functions for nearly counterfactual revision

over ω2 results in a belief algebra that is only slightly more
complicated, and we gain an expressive advantage. In par-
ticular, we can represent situations where stubbornly held
beliefs are resistant to evidence to the contrary. We have
demonstrated that this results in a slightly more expressive
class of improvement operators where evidence increases
relative belief, but no finite number of improvements will
actually lead to a change in the belief state. Finally, we
addressed so-called “nearly counterfactual” revision, where
we incorporate information that is conditional on a highly
unlikely statement.

Future Work
This paper is a preliminary exploration into different appli-
cations and formal properties of infinite valued ordinal con-
ditional functions. It remains to move beyond ω2-CFs, to
completely characterize the relationship with improvement
operators, and to consider further practical applications.

In the present framework, we have discussed nearly coun-
terfactual reasoning as a tool for keeping a sort of “memory”
about unlikely situations, in order to incorporate this infor-
mation later if necessary. But there is also a natural kind of
reasoning that would allow us to use conditionals to reason
by analogy about the actual state of the world. Consider the
following well-known ambiguity from (Lew73), and origi-
nally attributed to Quine:

1. If Caesar was president, he would use nuclear weapons.

2. If Caesar was president, he would use catapults.

As a conditional, we could write both as (W |C), where W
stands for a weapon that would be used and C is the condi-
tion “Caesar is president.” But (1) suggests that we condi-
tion by imagining Caesar alive in the current world. So this
is a conditional statement interpreted in the current state of
the world. On the other hand, (2) suggests that we consider
what would happen in some past world where Caesar exists.

Now suppose that we believe a certain politician is actu-
ally very similar to Caesar. If we believe that Caesar would
use nuclear weapons, then we may conclude that this “real”
politician would also use nuclear weapons. Formally, we
could proceed as follows: if some hypothetical world is iso-
morphic to the current state of the world when we restrict
the vocabulary (to not include Caesar), then we can use in-
ferences about the hypothetical world to draw conclusions
about the actual world. This is a form of ampliative rea-
soning that we intend to explore through ω2-CFs in future
work.

References
C.E. Alchourrón, P. Gärdenfors, and D. Makinson. On the
logic of theory change: Partial meet functions for contrac-
tion and revision. Journal of Symbolic Logic, 50(2):510–
530, 1985.
R. Booth and T. Meyer. Admissible and restrained revi-
sion. Journal of Artificial Intelligence Research, 26:127–
151, 2006.
K. Devlin. The Joy of Sets. Springer, 1993.

A. Darwiche and J. Pearl. On the logic of iterated belief
revision. Artificial Intelligence, 89(1-2):1–29, 1997.
Didier Dubois and Henri Prade. Possibilistic logic: a ret-
rospective and prospective view. Fuzzy Sets and Systems,
144(1):3–23, 2004.
A. Hunter. Infinite ordinals and finite improvement. In Pro-
ceedings of the International Conference on Logic, Interac-
tion and Rationality (LORI), pages 416–420, 2015.
A. Hunter. Nearly counterfactual revision. In Proceedings
of the Canadian Conference on Artificial Intelligence, 2016.
Y. Jin and M. Thielscher. Iterated belief revision, revised.
Artificial Intelligence, 171(1):1–18, 2007.
Gabriele Kern-Isberner. Postulates for conditional belief re-
vision. In Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence (IJCAI), pages 186–
191, 1999.
H. Katsuno and A.O. Mendelzon. Propositional knowledge
base revision and minimal change. Artificial Intelligence,
52(2):263–294, 1992.
S. Konieczny. Using transfinite ordinal conditional func-
tions. In Proceedings of Symbolic and Quantitative Ap-
proaches to Reasoning with Uncertainty, 10th European
Conference, ECSQARU 2009, pages 396–407, 2009.
Sébastien Konieczny and Ramón Pino Péréz. Improvement
operators. In Eleventh International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR’08),
pages 177–186, 2008.
D. Lewis. Counterfactuals. Harvard University Press, 1973.
W. Spohn. Ordinal conditional functions. A dynamic theory
of epistemic states. In W.L. Harper and B. Skyrms, editors,
Causation in Decision, Belief Change, and Statistics, vol. II,
pages 105–134. Kluwer Academic Publishers, 1988.
M. A. Williams. Transmutations of knowledge systems.
In Proceedings of the Fourth International Conference on
the Principles of Knowledge Representation and Reasoning
(KR94), pages 619–629, 1994.

83

Characterizing Realizability in Abstract Argumentation∗

Thomas Linsbichler
TU Wien
Austria

Jörg Pührer and Hannes Strass
Leipzig University

Germany

Abstract

Realizability for knowledge representation formalisms stud-
ies the following question: Given a semantics and a set of
interpretations, is there a knowledge base whose semantics
coincides exactly with the given interpretation set? We intro-
duce a general framework for analyzing realizability in ab-
stract dialectical frameworks (ADFs) and various of its sub-
classes. In particular, the framework applies to Dung argu-
mentation frameworks, SETAFs by Nielsen and Parsons, and
bipolar ADFs. We present a uniform characterization method
for the admissible, complete, preferred and model/stable se-
mantics. We employ this method to devise an algorithm that
decides realizability for the mentioned formalisms and se-
mantics; moreover the algorithm allows for constructing a
desired knowledge base whenever one exists. The algorithm
is built in a modular way and thus easily extensible to new
formalisms and semantics. We have also implemented our
approach in answer set programming, and used the imple-
mentation to obtain several novel results on the relative ex-
pressiveness of the abovementioned formalisms.

1 Introduction
The abstract argumentation frameworks (AFs) introduced by
Dung (1995) have garnered increasing attention in the recent
past. In his seminal paper, Dung showed how an abstract no-
tion of argument (seen as an atomic entity) and the notion of
individual attacks between arguments together could recon-
struct several established KR formalisms in argumentative
terms. Despite the generality of those and many more res-
ults in the field that was sparked by that paper, researchers
also noticed that the restriction to individual attacks is often
overly limiting, and devised extensions and generalizations
of Dung’s frameworks: directions included generalizing in-
dividual attacks to collective attacks (Nielsen and Parsons,
2006), leading to so-called SETAFs; others started offering a
support relation between arguments (Cayrol and Lagasquie-
Schiex, 2005), preferences among arguments (Amgoud and
Cayrol, 2002; Modgil, 2009), or attacks on attacks into ar-
bitrary depth (Baroni et al., 2011). This is only the tip of an
iceberg, for a more comprehensive overview we refer to the
work of Brewka, Polberg, and Woltran (2014).

∗This research has been supported by DFG (project BR 1817/7-
1) and FWF (projects I1102 and P25518).

One of the most recent and most comprehensive general-
izations of AFs has been presented by Brewka and Woltran
(2010) (and later continued by Brewka et al., 2013) in the
form of abstract dialectical frameworks (ADFs). These
ADFs offer any type of link between arguments: individual
attacks (as in AFs), collective attacks (as in SETAFs), and
individual and collective support, to name only a few. This
generality is achieved through so-called acceptance condi-
tions associated to each statement. Roughly, the meaning of
relationships between arguments is not fixed in ADFs, but
is specified by the user for each argument in the form of
Boolean functions (acceptance functions) on the argument’s
parents. However, this generality comes with a price: Strass
and Wallner (2015) found that the complexity of the associ-
ated reasoning problems of ADFs is in general higher than
in AFs (one level up in the polynomial hierarchy). Fortu-
nately, the subclass of bipolar ADFs (defined by Brewka
and Woltran, 2010) is as complex as AFs (for all considered
semantics) while still offering a wide range of modeling ca-
pacities (Strass and Wallner, 2015). However, there has only
been little concerted effort so far to exactly analyze and com-
pare the expressiveness of the abovementioned languages.

This paper is about exactly analyzing means of expres-
sion for argumentation formalisms. Instead of motivating
expressiveness in natural language and showing examples
that some formalisms seem to be able to express but others
do not, we tackle the problem in a formal way. We use a pre-
cise mathematical definition of expressiveness: a set of in-
terpretations is realizable by a formalism under a semantics
if and only if there exists a knowledge base of the formalism
whose semantics is exactly the given set of interpretations.
Studying realizability in AFs has been started by Dunne et
al. (2013, 2015), who analyzed realizability for extension-
based semantics, that is, interpretations represented by sets
where arguments are either accepted (in the extension set)
or not accepted (not in the extension set). While their initial
work disregarded arguments that are never accepted, there
have been continuations where the existence of such “invis-
ible” arguments is ruled out (Baumann et al., 2014; Lins-
bichler, Spanring, and Woltran, 2015). Dyrkolbotn (2014)
began to analyze realizability for labeling-based semantics
of AFs, that is, three-valued semantics where arguments can
be accepted (mapped to true), rejected (mapped to false) or
neither (mapped to unknown). Strass (2015) started to ana-

85

lyze the relative expressiveness of two-valued semantics for
ADFs (relative with respect to related formalisms). Most
recently, Pührer (2015) presented precise characterizations
of realizability for ADFs under several three-valued se-
mantics, namely admissible, grounded, complete, and pre-
ferred. The term “precise characterizations” means that he
gave necessary and sufficient conditions for an interpreta-
tion set to be ADF-realizable under a semantics.

The present paper continues this line of work by lifting it
to a much more general setting. We combine the works of
Dunne et al. (2015), Pührer (2015), and Strass (2015) into
a unifying framework, and at the same time extend them to
formalisms and semantics not considered in the respective
papers: we treat several formalisms, namely AFs, SETAFs,
and (B)ADFs, while the previous works all used different
approaches and techniques. This is possible because all of
these formalisms can be seen as subclasses of ADFs that are
obtained by suitably restricting the acceptance conditions.

Another important feature of our framework is that we
uniformly use three-valued interpretations as the underly-
ing model theory. In particular, this means that arguments
cannot be “invisible” any more since the underlying vocab-
ulary of arguments is always implicit in each interpretation.
Technically, we always assume a fixed underlying vocab-
ulary and consider our results parametric in that vocabu-
lary. In contrast, for example, Dyrkolbotn (2014) presents a
construction for realizability that introduces new arguments
into the realizing knowledge base; we do not allow that.
While sometimes the introduction of new arguments can
make sense, for example if new information becomes avail-
able about a domain or a debate, it is not sensible in general,
as these new arguments would be purely technical with an
unclear dialectical meaning. Moreover, it would lead to a
different notion of realizability, where most of the realizab-
ility problems would be significantly easier, if not trivial.

The paper proceeds as follows. We begin with recall-
ing and introducing the basis and basics of our work – the
formalisms we analyze and the methodology with which
we analyze them. Next we introduce our general frame-
work for realizability; the major novelty is our consistent
use of so-called characterization functions, firstly introduced
by Pührer (2015), which we adapt to further semantics.
The main workhorse of our approach will be a parametric
propagate-and-guess algorithm for deciding whether a given
interpretation set is realizable in a formalism under a se-
mantics. We then analyze the relative expressiveness of the
considered formalisms, presenting several new results that
we obtained using an implementation of our framework. We
conclude with a discussion.

2 Preliminaries
We make use of standard mathematical concepts like func-
tions and partially ordered sets. For a function f : X → Y
we denote the update of f with a pair (x, y) ∈ X × Y by
f |xy : X → Y with z 7→ y if z = x, and z 7→ f(z) other-
wise. For a function f : X → Y and y ∈ Y , its preimage
is f−1(y) = {x ∈ X | f(x) = y}. A partially ordered set
is a pair (S,v) with v a partial order on S. A partially
ordered set (S,v) is a complete lattice if and only if every

S′ ⊆ S has both a greatest lower bound (glb)
d
S′ ∈ S and

a least upper bound (lub)
⊔
S′ ∈ S. A partially ordered set

(S,v) is a complete meet-semilattice iff every non-empty
subset S′ ⊆ S has a greatest lower bound

d
S′ ∈ S (the

meet) and every ascending chain C ⊆ S has a least upper
bound

⊔
C ∈ S.

Three-Valued Interpretations Let A be a fixed fi-
nite set of statements. An interpretation is a mapping
v : A→ {t, f ,u} that assigns one of the truth values true
(t), false (f) or unknown (u) to each statement. An inter-
pretation is two-valued if v(A) ⊆ {t, f}, that is, the truth
value u is not assigned. Two-valued interpretations v can
be extended to assign truth values v(ϕ) ∈ {t, f} to proposi-
tional formulas ϕ as usual.

The three truth values are partially ordered according to
their information content: we have u <i t and u <i f and
no other pair in <i, which intuitively means that the clas-
sical truth values contain more information than the truth
value unknown. As usual, we denote by ≤i the partial
order associated to the strict partial order <i. The pair
({t, f ,u} ,≤i) forms a complete meet-semilattice with the
information meet operation ui. This meet can intuitively be
interpreted as consensus and assigns t ui t = t, f ui f = f ,
and returns u otherwise.

The information ordering ≤i extends in a straightforward
way to interpretations v1, v2 over A in that v1 ≤i v2 iff
v1(a) ≤i v2(a) for all a ∈ A. We say for two interpreta-
tions v1, v2 that v2 extends v1 iff v1 ≤i v2. The set V of
all interpretations over A forms a complete meet-semilattice
with respect to the information ordering ≤i. The con-
sensus meet operation ui of this semilattice is given by
(v1 ui v2)(a) = v1(a) ui v2(a) for all a ∈ A. The least ele-
ment of (V,≤i) is the valuation vu : A→ {u} mapping all
statements to unknown – the least informative interpreta-
tion. By V2 we denote the set of two-valued interpretations;
they are the ≤i-maximal elements of the meet-semilattice
(V,≤i). We denote by [v]2 the set of all two-valued inter-
pretations that extend v. The elements of [v]2 form an ≤i-
antichain with greatest lower bound v =

d
i[v]2.

Abstract Argumentation Formalisms An abstract dia-
lectical framework (ADF) is a tuple D = (A,L,C) where
A is a set of statements (representing positions one can take
or not take in a debate), L ⊆ A×A is a set of links (repres-
enting dependencies between the positions), C = {Ca}a∈A
is a collection of functions Ca : 2par(a) → {t, f}, one
for each statement a ∈ A. The function Ca is the ac-
ceptance condition of a and expresses whether a can
be accepted, given the acceptance status of its parents
par(a) = {b ∈ S | (b, a) ∈ L}. We usually represent each
Ca by a propositional formulaϕa over par(a). To specify an
acceptance condition, then, we takeCa(M ∩ par(a)) = t to
hold iff M is a model for ϕa.

Brewka and Woltran (2010) introduced a useful subclass
of ADFs: an ADF D = (A,L,C) is bipolar iff all links in
L are supporting or attacking (or both). A link (b, a) ∈ L
is supporting in D iff for all M ⊆ par(a), we have that
Ca(M) = t implies Ca(M ∪ {b}) = t. Symmetrically, a
link (b, a) ∈ L is attacking in D iff for all M ⊆ par(a), we

86 characterizing realizability in abstract argumentation

have that Ca(M ∪ {b}) = t implies Ca(M) = t. If a link
(b, a) is both supporting and attacking then b has no actual
influence on a. (But the link does not violate bipolarity.) We
write BADFs as D = (A,L+ ∪ L−, C) and mean that L+

contains all supporting links and L− all attacking links.
The semantics of ADFs can be defined using an operator

ΓD over three-valued interpretations (Brewka and Woltran,
2010; Brewka et al., 2013). For an ADF D and a three-
valued interpretation v, the interpretation ΓD(v) is given by

a 7→ d
i {w(ϕa) | w ∈ [v]2}

That is, for each statement a, the operator returns the con-
sensus truth value for its acceptance formula ϕa, where the
consensus takes into account all possible two-valued inter-
pretations w that extend the input valuation v. If this v is
two-valued, we get [v]2 = {v} and thus ΓD(v)(a) = v(ϕa).

The standard semantics of ADFs are now defined as fol-
lows. For ADF D, an interpretation v : A→ {t, f ,u} is

• admissible iff v ≤i ΓD(v);

• complete iff ΓD(v) = v;

• preferred iff it is ≤i-maximal admissible;

• a two-valued model iff it is two-valued and ΓD(v) = v.

We denote the sets of interpretations that are admissible,
complete, preferred, and two-valued models by adm(D),
com(D), prf (D) and mod(D), respectively. These defin-
itions are proper generalizations of Dung’s notions for AFs:
For an AF (A,R), where R ⊆ A × A is the attack rela-
tion, the ADF associated to (A,R) is D(A,R) = (A,R,C)
with C = {ϕa}a∈A and ϕa =

∧
b:(b,a)∈R ¬b for all a ∈ A.

AFs inherit their semantics from the definitions for
ADFs (Brewka et al., 2013, Theorems 2 and 4). In particu-
lar, an interpretation is stable for an AF (A,R) if and only
if it is a two-valued model of D(A,R).

A SETAF is a pair S = (A,X) whereX ⊆ (2A \ {∅})×A
is the (set) attack relation. We define three-valued counter-
parts of the semantics introduced by Nielsen and Parsons
(2006), following the same conventions as in three-valued
semantics of AFs (Caminada and Gabbay, 2009) and argu-
mentation formalisms in general. Given a statement a ∈ A
and an interpretation v we say that a is acceptable wrt. v if
∀(B, a) ∈ X∃a′ ∈ B : v(a′) = f and a is unacceptable wrt.
v if ∃(B, a) ∈ X∀a′ ∈ B : v(a′) = t. For an interpretation
v : A→ {t, f ,u} it holds that

• v ∈ adm(S) iff for all a ∈ A, a is acceptable wrt. v if
v(a) = t and a is unacceptable wrt. v if v(a) = f ;

• v ∈ com(S) iff for all a ∈ A, a is acceptable wrt. v iff
v(a) = t and a is unacceptable wrt. v iff v(a) = f ;

• v ∈ prf (S) iff v is ≤i-maximal admissible; and

• v ∈ mod(S) iff v ∈ adm(F) and @a ∈ A : v(a) = u.

For a SETAF S = (A,X) the corresponding ADF DS has
acceptance formulaϕa =

∧
(B,a)∈X

∨
a′∈B ¬a′ for each state-

ment a ∈ A. (Polberg, 2016)

Proposition 1. For any SETAF S = (A,X) it holds that
σ(S) = σ(DS), where σ ∈ {adm, com, prf ,mod}.

Proof. Given interpretation v and statement a, it holds that
ΓDS (v)(a) = t iff ∀w ∈ [v]2 : w(a) = t iff ∀(B, a) ∈ X
∃a′ ∈ B : v(a′) = f iff a is acceptable wrt. v and
ΓDS (v)(a) = f iff ∀w ∈ [v]2 : w(a) = f iff ∃(B, a) ∈ X
∀a′ ∈ B : v(a′) = t iff a is unacceptable wrt. v. Hence
σ(S) = σ(DS) for σ ∈ {adm, com, prf ,mod}. �

Realizability A set V ⊆ V of interpretations is realizable
in a formalism F under a semantics σ if and only if there
exists a knowledge base kb ∈ F having exactly σ(kb) = V .
Pührer (2015) characterized realizability for ADFs under
various three-valued semantics. We will reuse the central
notions for capturing the complete semantics in this work.

Definition 1 (Pührer 2015). Let V be a set of interpreta-
tions. A function f : V2 → V2 is a com-characterization of
V iff: for each v ∈ V we have v ∈ V iff for each a ∈ A:

• v(a) 6= u implies f(v2)(a) = v(a) for all v2 ∈ [v]2 and
• v(a) = u implies f(v′2)(a) = t and f(v′′2)(a) = f for

some v′2, v
′′
2 ∈ [v]2. N

From a function of this kind we can build a correspond-
ing ADF by the following construction. For a function
f : V2 → V2, we define Df as the ADF where the accept-
ance formula for each statement a is given by

ϕfa =
∨

w∈V2,
f(w)(a)=t

φw with φw =
∧

w(a′)=t

a′ ∧
∧

w(a′)=f

¬a′

Observe that we have v(φw) = t iff v = w by definition.
Intuitively, the acceptance condition ϕfa is constructed such
that v is a model of ϕfa if and only if we find f(v)(a) = t.

Proposition 2 (Pührer 2015). Let V ⊆ V be a set of inter-
pretations. (1) For each ADF D with com(D) = V , there
is a com-characterization fD for V ; (2) for each com-char-
acterization f : V2 → V2 for V we have com(Df) = V .

The result shows that V can be realized under complete se-
mantics if and only if there is a com-characterization for V .

3 A General Framework for Realizability
The main underlying idea of our framework is that all ab-
stract argumentation formalisms introduced in the previous
section can be viewed as subclasses of abstract dialectical
frameworks. This is clear for ADFs themselves and for
BADFs by definition; for AFs and SETAFs it is fairly easy to
see. However, knowing that these formalisms can be recast
as ADFs is not everything. To employ this knowledge for
realizability, we must be able to precisely characterize the
corresponding subclasses in terms of restricting the ADFs’
acceptance functions. Alas, this is also possible and paves
the way for the framework we present in this section. Most
importantly, we will make use of the fact that different form-
alisms and different semantics can be characterized modu-
larly, that is, independently of each other.

Towards a uniform account of realizability for ADFs un-
der different semantics, we start with a new characterization
of realizability for ADFs under admissible semantics that is
based on a notion similar in spirit to com-characterizations.

87

Definition 2. Let V be a set of interpretations. A function
f : V2 → V2 is an adm-characterization of V iff: for each
v ∈ V we have v ∈ V iff for every a ∈ A:
• v(a) 6= u implies f(v2)(a) = v(a) for all v2 ∈ [v]2. N
Note that the only difference to Definition 1 is dropping the
second condition related to statements with truth value u.
Proposition 3. Let V ⊆ V be a set of interpretations.
(1) For each ADF D such that adm(D) = V , there is
an adm-characterization fD for V ; (2) for each adm-cha-
racterization f : V2 → V2 for V we have adm(Df) = V .
Proof. (1) We define the function fD : V2 → V2 as
fD(v2)(a) = v2(ϕa) for every v2 ∈ V2 and a ∈ Awhere ϕa
is the acceptance formula of a inD. We will show that fD is
an adm-characterization for V = adm(D). Let v be an in-
terpretation. Consider the case v ∈ adm(D) and v(a) 6= u
for some a ∈ A and some v2 ∈ [v]2. From v ≤i ΓD(v)
we get v2(ϕa) = v(a). By definition of fD is follows that
fD(v2)(a) = v(a). Now assume v 6∈ adm(D) and con-
sequently v 6≤i ΓD(v). There must be some a ∈ A such
that v(a) 6= u and v(a) 6= ΓD(v)(a). Hence, there is some
v2 ∈ [v]2 with v2(ϕa) 6= v(a) and fD(v2)(a) 6= v(a) by
definition of fD. Thus, fD is an adm-characterization

(2) Observe that for every two-valued interpretation v2

and every a ∈ A we have f(v2)(a) = v2(ϕfa). (⊆): Let
v ∈ adm(Df) be an interpretation and a ∈ A a state-
ment such that v(a) 6= u. Let v2 be a two-valued inter-
pretation with v2 ∈ [v]2. Since v ≤i ΓDf (v) we have
v(a) = v2(ϕfa). Therefore, by our observation it must also
hold that f(v2)(a) = v(a). Thus, by Definition 2, v ∈ V .
(⊇): Consider an interpretation v such that v 6∈ adm(Df).
We show that v 6∈ V . From v 6∈ adm(Df) we get v 6≤i
ΓDf (v). There must be some a ∈ A such that v(a) 6= u
and v(a) 6= ΓDf (v)(a). Hence, there is some v2 ∈ [v]2 with
v2(ϕfa) 6= v(a) and consequently f(v2)(a) 6= v(a). Thus,
by Definition 2 we have v 6∈ V . �
When listing sets of interpretations in examples, for the sake
of readability we represent three-valued interpretations by
sequences of truth values, tacitly assuming that the under-
lying vocabulary is given and has an associated total order-
ing. For example, for the vocabulary A = {a, b, c} we rep-
resent the interpretation {a 7→ t, b 7→ f , c 7→ u} by the se-
quence tfu.
Example 1. Consider the sets V1 = {uuu, tff , ftu} and
V2 = {tff , ftu} of interpretations over A = {a, b, c}. The
mapping f = {ttt 7→ ftt, ttf 7→ tft, tft 7→ ttt, tff 7→
tff , ftt 7→ ftf , ftf 7→ ftt, f ft 7→ ttf , f f f 7→ ftf} is an
adm-characterization for V1. Thus, the ADF Df has V1 as
its admissible interpretations. Indeed, the realizing ADF has
the following acceptance conditions:

ϕfa ≡ (a ∧ b ∧ ¬c) ∨ (a ∧ ¬b) ∨ (¬a ∧ ¬b ∧ c)
ϕfb ≡ (a ∧ c) ∨ (¬a ∧ b) ∨ (¬a ∧ ¬b ∧ ¬c)
ϕfc ≡ (a ∧ b) ∨ (¬a ∧ b ∧ ¬c) ∨ (¬b ∧ c)

For V2 no adm-characterization exists because uuu 6∈ V2

but the implication of Definition 2 trivially holds for a, b,
and c. �

We have seen that the construction Df for realizing under
complete semantics can also be used for realizing a set V of
interpretations under admissible semantics. The only differ-
ence is that we here require f to be an adm-characterization
instead of a com-characterization for V . Note that admiss-
ible semantics can be characterized by properties that are
easier to check than existence of an adm-characterization
(see the work of Pührer, 2015). However, using the same
type of characterizations for different semantics allows for a
unified approach for checking realizability and constructing
a realizing ADF in case one exists.

For realizing under the model semantics, we can likewise
present an adjusted version of com-characterizations.

Definition 3. Let V ⊆ V be a set of interpretations. A func-
tion f : V2 → V2 is a mod -characterization of V if and only
if: (1) f is defined on V (that is, V ⊆ V2) and (2) for each
v ∈ V2, we have v ∈ V iff f(v) = v. N

As we can show, there is a one-to-one correspondence
between mod -characterizations and ADF realizations.

Proposition 4. Let V ⊆ V be a set of interpretations.
(1) For each ADFD such that mod(D) = V , there is a mod -
characterization fD for V ; (2) vice versa, for each mod -
characterization f : V2 → V2 for V we find mod(Df) = V .

Proof. (1) Let D be an ADF with mod(D) = V . It imme-
diately follows that V ⊆ V2. To define fD we can use the
construction in the proof of Proposition 3. It follows directly
that for any v ∈ V2, we find fD(v) = v iff v ∈ V . Thus fD
is a mod -characterization for V .

(2) Let V ⊆ V2 and f : V2 → V2 be a mod -
characterization of V . For any v ∈ V2 we have:

v ∈ V ⇐⇒ v = f(v)

⇐⇒ ∀a ∈ A : (v(a) = f(v)(a))

⇐⇒ ∀a ∈ A : (v(a) = t↔ f(v)(a) = t)

⇐⇒ ∀a ∈ A : (v(a) = t ↔ (∃w ∈ V2 : f(w)(a) = t

∧ v = w))

⇐⇒ ∀a ∈ A : (v(a) = t ↔ (∃w ∈ V2 : f(w)(a) = t

∧ v(φw) = t))

⇐⇒ ∀a ∈ A :

v(a) = t ↔ v

∨

w∈V2,
f(w)(a)=t

φw

 = t

⇐⇒ ∀a ∈ A : v(a) = v

∨

w∈V2,
f(w)(a)=t

φw

⇐⇒ ∀a ∈ A : v(a) = v(ϕfa) ⇐⇒ v ∈ mod(Df) �

A related result was given by Strass (2015, Proposition 10).
The characterization we presented here fits into the general
framework of this paper and is directly usable for our realiz-
ability algorithm. Wrapping up, the next result summarizes
how ADF realizability can be captured by different types of
characterizations for the semantics we considered so far.

88 characterizing realizability in abstract argumentation

Theorem 5. Let V ⊆ V be a set of interpretations and con-
sider σ ∈ {adm, com,mod}. There is an ADF D such that
σ(D) = V if and only if there is a σ-characterization for V .

The preferred semantics of an ADF D is closely related to
its admissible semantics as, by definition, the preferred in-
terpretations of D are its ≤i-maximal admissible interpret-
ations. As a consequence we can also describe preferred
realizability in terms of adm-characterizations. We use the
lattice-theoretic standard notation max≤i V to select the≤i-
maximal elements of a given set V of interpretations.

Corollary 6. Let V ⊆ V be a set of interpretations. There is
an ADF D with prf (D) = V iff there is an adm-character-
ization for some V ′ ⊆ V with V ⊆ V ′ and max≤i V

′ = V .

Finally, we give a result on the complexity of deciding real-
izability for the mentioned formalisms and semantics.

Proposition 7. Let F ∈ {AF,SETAF,BADF,ADF} be a
formalism and σ ∈ {adm, com, prf ,mod} be a semantics.
The decision problem “Given a vocabulary A and a set
V ⊆ V of interpretations over A, is there a kb ∈ F such that
σ(kb) = V ?” can be decided in nondeterministic time that
is polynomial in the size of V .1

Proof. For all considered F and σ, computing all σ-
interpretations of a given witness kb ∈ F can be done in
time that is linear in the size of V . Comparing the result
to V can also be done in linear time. �

3.1 Deciding Realizability: Algorithm 1
Our main algorithm for deciding realizability is a propagate-
and-guess algorithm in the spirit of the DPLL algorithm for
deciding propositional satisfiability (Gomes et al., 2008). It
is generic with respect to (1) the formalism F and (2) the
semantics σ for which should be realized. To this end, the
propagation part of the algorithm is kept exchangeable and
will vary depending on formalism and semantics. Roughly,
in the propagation step the algorithm uses the desired set V
of interpretations to derive certain necessary properties of
the realizing knowledge base (line 2). This is the essen-
tial part of the algorithm: the derivation rules (propagat-
ors) used there are based on characterizations of realizability
with respect to formalism and semantics. Once propagation
of properties has reached a fixed point (line 7), the algorithm
checks whether the derived information is sufficient to con-
struct a knowledge base. If so, the knowledge base can be
constructed and returned (line 9). Otherwise (no more in-
formation can be obtained through propagation and there is
not enough information to construct a knowledge base yet),
the algorithm guesses another assignment for the character-
ization (line 11) and calls itself recursively.

The main data structure that Algorithm 1 operates on
is a set of triples (v, a,x) consisting of a two-valued
interpretation v ∈ V2, an atom a ∈ A and a truth value
x ∈ {t, f}. This data structure is intended to represent the
σ-characterizations introduced in Definitions 1 to 3. There,

1We assume here that the representation of any V over A has
size Θ(3|A|). There might be specific V with smaller representa-
tions, but we cannot assume any better for the general case.

Algorithm 1 realize(F , σ, V, F)

Input: • a formalism F
• a semantics σ for F
• a set V of interpretations v : A→ {t, f ,u}
• a relation F ⊆ V2 ×A× {t, f}, initially empty

Output: a kb ∈ F with σ(kb) = V or “no” if none exists
1: repeat
2: set F∆ :=

⋃
p∈PFσ

p(V, F) \ F

3: set F := F ∪ F∆

4: if ∃v ∈ V2,∃a ∈ A : {(v, a, t), (v, a, f)} ⊆ F then
5: return “no”
6: end if
7: until F∆ = ∅
8: if ∀v ∈ V2,∀a ∈ A,∃x ∈ {t, f} : (v, a, x) ∈ F then
9: return kbFσ (F)

10: end if
11: choose v ∈ V2, a ∈ A with (v, a, t) /∈ F , (v, a, f) /∈ F
12: if realize(F , σ, V, F ∪ {(v, a, t)}) 6= “no” then
13: return realize(F , σ, V, F ∪ {(v, a, t)})
14: else
15: return realize(F , σ, V, F ∪ {(v, a, f)})
16: end if

a σ-characterization is a function f : V2 → V2 from two-
valued interpretations to two-valued interpretations. How-
ever, as the algorithm builds the σ-characterization step by
step and there might not even be a σ-characterization in
the end (because V is not realizable), we use a set F of
triples (v, a,x) to be able to represent both partial and in-
coherent states of affairs. The σ-characterization candid-
ate induced by F is partial if we have that for some v and
a, neither (v, a, t) ∈ F nor (v, a, f) ∈ F ; likewise, the can-
didate is incoherent if for some v and a, both (v, a, t) ∈ F
and (v, a, f) ∈ F . If F is neither partial nor incoherent, it
gives rise to a unique σ-characterization that can be used
to construct the knowledge base realizing the desired set of
interpretations. The correspondence to the characterization-
function is then such that f(v)(a) = x iff (v, a,x) ∈ F .

In our presentation of the algorithm we focused on its
main features, therefore the guessing step (line 11) is com-
pletely “blind”. It is possible to use common CSP tech-
niques, such as shaving (removing guessing possibilities that
directly lead to inconsistency). Finally, we remark that the
algorithm can be extended to enumerate all possible realiz-
ations of a given interpretation set – by keeping all choice
points in the guessing step and thus exhaustively exploring
the whole search space.

In the case where the constructed relation F becomes
functional at some point, the algorithm returns a realizing
knowledge base kbFσ (F). For ADFs, this just means that
we denote by f the σ-characterization represented by F and
set kbADF

σ (F) = Df . For the remaining formalisms we will
introduce the respective constructions in later subsections.

The algorithm is parametric in two dimensions, namely
with respect to the formalism F and with respect to the se-
mantics σ. These two aspects come into the algorithm via

89

p∈adm(V, F) = {(v2, a, v(a)) | v ∈ V, v2 ∈ [v]2, v(a) 6= u} p∈,ucom (V, F) = {(v2, a,¬x) | v ∈ V, v2 ∈ [v]2, v(a) = u,

p/∈
adm(V, F) = {(v2, a,¬v(a)) | v ∈ V \ V, v2 ∈ [v]2, x ∈ {t, f},∀v′2 ∈ [v]2 : v2 6= v′2 → (v′2, a,x) ∈ F}

v(a) 6= u,∀b ∈ A \ v−1(u), ∀v′2 ∈ [v]2 : p 6∈,tfcom (V, F) = {(v2, a,¬v(a)) | v ∈ V \ V, v2 ∈ [v]2, v(a) 6= u,

(a, v2) 6= (b, v′2)→ (v′2, b, v(b)) ∈ F} ∀b ∈ A \ v−1(u), ∀v′2 ∈ [v]2 : (a, v2) 6= (b, v′2)→ (v′2, b, v(b)) ∈ F,

p adm (V, F) = {(v, a, t), (v, a, f) | v ∈ V2, a ∈ A, vu 6∈ V } ∀b ∈ v−1(u), ∃v′′2 , v′′′2 ∈ [v]2 : (v′′2 , b, t), (v
′′′
2 , b, f) ∈ F}

p∈mod (V, F) = {(v, a, v(a)) | v ∈ V, a ∈ A} p 6∈,ucom (V, F) = {(v2, a,¬x) | v ∈ V \ V, v2 ∈ [v]2, v(a) = u,

p/∈
mod (V, F) = {(v, a,¬v(a)) | v ∈ V2 \ V, a ∈ A, ∀b ∈ A \ v−1(u), ∀v′2 ∈ [v]2 : (v2, b, v(b)) ∈ F,

∀c ∈ A \ {a} : (v, c, v(c)) ∈ F} ∀b ∈ v−1(u) \ {a} : ∃v′′2 , v′′′2 ∈ [v]2 : (v′′2 , b, t),

p mod (V, F) = {(v, a, t), (v, a, f) | v ∈ V2, a ∈ A, V 6⊆ V2} (v′′′2 , b, f) ∈ F, ∀v′′′′2 ∈ [v]2 \ {v2} : (v′′′′2 , b,x) ∈ F}

Figure 1: Semantics propagators for the complete (PADF
com = {p∈,tfcom , p

∈,u
com , p

6∈,tf
com , p

6∈,u
com} with p∈,tfcom(V, F) = p∈adm(V, F)), ad-

missible (PADF
adm = {p∈adm , p/∈adm , p

adm}), and model semantics (PADF

mod = {p∈mod , p
/∈
mod , p

mod}).

so-called propagators. A propagator is a formalism-specific
or semantics-specific set of derivation rules. Given a set V
of desired interpretations and a partial σ-characterization F ,
a propagator p derives new triples (v, a,x) that must neces-
sarily be part of any total σ-characterization f for V such
that f extends F . In the following, we present semantics
propagators for admissible, complete and two-valued model
(in (SET)AF terms stable) semantics, and formalism propag-
ators for BADFs, AFs, and SETAFs.

3.2 Semantics Propagators
These propagators (cf. Figure 1) are directly derived from
the properties of σ-characterizations presented in Defini-
tions 1 to 3. While the definitions provide exact conditions
to check whether a given function is a σ-characterization,
the propagators allow us to derive definite values of partial
characterizations that are necessary to fulfill the conditions
for being a σ-characterization.

For admissible semantics, the condition for a function f
to be an adm-characterization of a desired set of interpreta-
tions V (cf. Definition 2) can be split into a condition for de-
sired interpretations v ∈ V and two conditions for undesired
interpretations v /∈ V . Propagator p∈adm derives new triples
by considering interpretations v ∈ V . Here, for all two-
valued interpretations v2 that extend v, the value f(v2) has
to be in accordance with v on v’s Boolean part, that is, the
algorithm adds (v2, a, v(a)) whenever v(a) 6= u. On the
other hand, p/∈adm derives new triples for v /∈ V in order to
ensure that there is a two-valued interpretation v2 extending
v where f(v2) differs from v on a Boolean value of v. Note
that while p∈adm immediately allows us to derive informa-
tion about F for each desired interpretation v ∈ V , propag-
ator p/∈adm is much weaker in the sense that it only derives a
triple of F if there is no other way to meet the conditions for
an undesired interpretation. Special treatment is required
for the interpretation vu that maps all statements to u and
is admissible for every ADF. This is not captured by p∈adm
and p/∈adm as these deal only with interpretations that have
Boolean mappings. Thus, propagator p adm serves to check
whether vu ∈ V . If this is not the case, the propagator im-
mediately makes the relation F incoherent and the algorithm

correctly answers “no”.
For complete semantics and interpretations v ∈ V ,

propagator p∈,tfcom derives triples just like in the admiss-
ible case. Propagator p∈,ucom deals with statements a ∈ A
having v(a) = u for which there have to be at least two
v2, v

′
2 ∈ [v]2 having f(v2)(a) = t and f(v′2)(a) = f . Hence

p∈,ucom derives triple (v2, a,¬x) if for all other v′2 ∈ [v]2 we
find a triple (v′2, a,x). For interpretations v /∈ V it must
hold that there is some a ∈ A such that (i) v(a) 6= u and
f(v2)(a) 6= v(a) for some v2 ∈ [v]2 or (ii) v(a) = u but for
all v2 ∈ [v]2, f(v2) assigns the same Boolean truth value x
to a. Now if neither (i) nor (ii) can be fulfilled by any state-
ment b ∈ A \ {a} due to the current contents of F , propagat-
ors p6∈,tfcom and p 6∈,ucom derive triple (v2, a,¬v(a)) for v(a) 6= u
if needed for a to fulfill (i) and (v2, a,¬x) for v(a) = u if
needed for a to fulfill (ii), respectively.

Example 2. Consider the set V3 = {uuu, fuu,uuf , ftf}.
First, we consider a run of realize(ADF, adm, V3, ∅). In the
first iteration, propagator p∈adm ensures that F∆ in line 2
contains (f f f , a, f), (ftf , a, f), (ftf , c, f), and (f f f , c, f).
Based on the latter three tuples and fuf /∈ V3, propag-
ator p/∈adm derives (f f f , a, t) in the second iteration which
together with (f f f , a, f) causes the algorithm to return
“no”. Consequently, V3 is not adm-realizable. A run of
realize(ADF, com, V3, ∅) on the other hand returns com-
characterization f for V3 that maps ttf to tff , ftt to f ft,
ftf and f f f to ftf and all other v2 ∈ V2 to f f f . Hence,
ADF Df , given by the acceptance conditions

ϕfa = a ∧ b ∧ ¬c, ϕfc = ¬a ∧ b ∧ c,
ϕfb = (¬a ∧ b¬ ∧ ¬c) ∨ (¬a ∧ ¬b ∧ ¬c)

has V3 as its complete semantics. �
Finally, for two-valued model semantics, propagator p∈mod
derives new triples by looking at interpretations v ∈ V . For
those, we must find f(v) = v in each mod -characterization
f by definition. Thus the algorithm adds (v, a, v(a)) for
each a ∈ A to the partial characterization F . Propagator
p/∈mod looks at interpretations v ∈ V2 \ V , for which it must
hold that f(v) 6= v. Thus there must be a statement a ∈ A
with v(a) 6= f(v)(a), which is exactly what this propagator

90 characterizing realizability in abstract argumentation

Algorithm 2 realizePrf (F , V)

Input: • a formalism F
• a set V of interpretations v : A→ {t, f ,u}

Output: Return some kb ∈ F with prf (kb) = V if one
exists or “no” otherwise.

1: if max≤i V 6= V then
2: return “no”
3: end if
4: set V < := {v ∈ V | ∃v′ ∈ V : v <i v

′}
5: set X := ∅
6: repeat
7: choose V ′ ⊆ V < with V ′ /∈ X
8: set X := X ∪ {V ′}
9: set V adm := V ∪ V ′

10: if realize(F , adm, V adm , ∅) 6= “no” then
11: return realize(F , adm, V adm , ∅)
12: end if
13: until ∀V ′ ⊆ V < : V ′ ∈ X
14: return “no”

derives whenever it is clear that there is only one statement
candidate left. This, in turn, is the case whenever all b ∈ A
with the opposite truth value ¬v(a) and all c ∈ Awith c 6= a
cannot coherently become the necessary witness any more.
The propagator p mod checks whether V ⊆ V2, that is, the
desired set of interpretations consists entirely of two-valued
interpretations. In that case this propagator makes the rela-
tion F incoherent, following a similar strategy as p adm .

Preferred Semantics Realizing a given set of interpret-
ations V under preferred semantics requires special treat-
ment. We do not have a σ-characterization function for
σ = prf at hand to directly check realizability of V but have
to find some V ′ ⊆ {v ∈ V | ∃v′ ∈ V : v <i v

′} such that
V ∪ V ′ is realizable under admissible semantics (cf. Corol-
lary 6). Algorithm 2 implements this idea by guessing such
a V ′ (line 7) and then using Algorithm 1 to try to realize
V ∪ V ′ under admissible semantics (line 11). If realize re-
turns a knowledge base kb realizing V ∪ V ′ under adm we
can directly use kb as solution of realizePrf since it holds
that prf (kb) = V , given that V is an ≤i-antichain (line 2).

3.3 Formalism Propagators
When constructing an ADF realizing a given set V of in-
terpretations under a semantics σ, the function kbADF

σ (F)
makes use of the σ-characterization given by F in the fol-
lowing way: v is a model of the acceptance condition ϕa
if and only if we find (v, a, t) ∈ F . Now as bipolar ADFs,
SETAFs and AFs are all subclasses of ADFs by restricting
the acceptance conditions of statements, these restrictions
also carry over to the σ-characterizations. The propagators
defined below use structural knowledge on the form of ac-
ceptance conditions of the respective formalisms to reduce
the search space or to induce incoherence of F whenever V
is not realizable.

Bipolar ADFs For bipolar ADFs, we use the fact that each
of their links must have at least one polarity, that is, must

be supporting or attacking. Therefore, if a link is not sup-
porting, it must be attacking, and vice versa. For canonical
realization, we obtain the polarities of links, i.e. the sets L+

and L−, as defined in Figure 2.

AFs To explain the AF propagators, we first need some
more definitions. On the two classical truth values, we
define the truth ordering f <t t, whence the operations tt
and ut with f tt t = t and f ut t = f result. These op-
erations can be lifted pointwise to two-valued interpreta-
tions as usual, that is, (v1 tt v2)(a) = v1(a) tt v2(a) and
(v1 ut v2)(a) = v1(a) ut v2(a). Again, the reflexive ver-
sion of <t is denoted by ≤t. The pair (V2,≤t) of two-
valued interpretations ordered by the truth ordering forms
a complete lattice with glb ut and lub tt. This complete
lattice has the least element vf : A→ {f}, the interpreta-
tion mapping all statements to false, and the greatest element
vt : A→ {t} mapping all statements to true, respectively.

Acceptance conditions of AF-based ADFs have the form
of conjunctions of negative literals. In the complete lattice
(V2,≤t), the model sets of AF acceptance conditions corres-
pond to the lattice-theoretic concept of an ideal, a subset of
V2 that is downward-closed with respect to ≤t and upward-
closed with respect to tt. The propagator directly imple-
ments these closure properties: application of pAF ensures
that when a σ-characterization F that is neither incoherent
nor partial is found in line 8 of Algorithm 1, then there is, for
each a ∈ A, an interpretation va such that (va, a, t) ∈ F and
v ≤t va for each (v, a, t) ∈ F . Hence va is crucial for the
acceptance condition, or in AF terms the attacks, of a and we
can define kbAF

σ (F) = (A, {(b, a) | a, b ∈ A, va(b) = f}).

SETAFs The propagator for SETAFs, pSETAF, is a weaker
version of that of AFs, since we cannot presume upward-
closure with respect to tt. In SETAF-based ADFs the ac-
ceptance formula is in conjunctive normal form contain-
ing only negative literals. By a transformation preserving
logical equivalence we obtain an acceptance condition in
disjunctive normal form, again with only negative liter-
als; in other words, a disjunction of AF acceptance formu-
las. Thus, the model set of a SETAF acceptance condi-
tion is not necessarily an ideal, but a union of ideals. For
the canonical realization we can make use of the fact that,
for each a ∈ A, the set V t

a = {v ∈ V2 | (v, a, t) ∈ F} is
downward-closed with respect to ≤t, hence the set of mod-
els of

∨
v∈max≤t V

t

∧
v(b)=f ¬b is exactly V t

a . The clauses
of its corresponding CNF-formula exactly coincide with the
sets of arguments attacking a in kbSETAF

σ (F).

3.4 Correctness
For a lack of space, we could not include a formal proof
of soundness and completeness of Algorithm 1, but rather
present arguments for termination and correctness.

Termination With each recursive call, the set F can never
decrease in size, as the only changes to F are adding the
results of propagation in line 3 and adding the guesses in
line 11. Also within the until-loop, the set F can never
decrease in size; furthermore there is only an overall finite
number of triples that can be added to F . Thus at some point

91

pSETAF(V, F) = {(vf , a, t) | a ∈ A} ∪ {(w, a, t) | (v, a, t) ∈ F,w ∈ V2, w <t v} ∪ {(w, a, f) | (v, a, f) ∈ F,w ∈ V2, v <t w}
pAF(V, F) = pSETAF(V, F) ∪ {(v1 tt v2, a, t) | (v1, a, t) ∈ F, (v2, a, t) ∈ F} L+ =

{
(b, a)

∣∣ (v, a, f) ∈ F, v(b) = f , (v|bt, a, t) ∈ F
}

pBADF(V, F) = {(v|bt, a,x) | (v, a,x) ∈ F, (w, a,¬x) ∈ F,w(b) = f , (w|bt, a,x) ∈ F} L− =
{
(b, a)

∣∣ (v, a, t) ∈ F, v(b) = f , (v|bt, a, f) ∈ F
}

Figure 2: Formalism propagators. For formalism F ∈ {AF, SETAF,BADF} and any σ ∈ {adm, com, prf ,mod}, we set the
respective propagator for F to PFσ = P ADF

σ ∪
{
pF
}

with pF as defined above. L+ and L− define link polarities for kbBADF
σ .

we must have F∆ = ∅ and leave the until-loop. Since F al-
ways increases in size, at some point it must either become
functional or incoherent, whence the algorithm terminates.

Soundness If the algorithm returns a realizing knowledge
base kbFσ (F), then according to the condition in line 8 the re-
lation F induced a total function f : V2 → V2. In particular,
because the until-loop must have been run through at least
once, there was at least one propagation step (line 2). Since
the propagators are defined such that they enforce everything
that must hold in a σ-characterization, we conclude that the
induced function f indeed is a σ-characterization for V . By
construction, we consequently find that σ(kbFσ (F)) = V .

Completeness If the algorithm answers “no”, then the ex-
ecution reached line 5. Thus, for the constructed set F , there
must have been an interpretation v ∈ V2 and a statement
a ∈ A such that {(v, a, t), (v, a, f)} ⊆ F , that is, F is inco-
herent. Since F is initially empty, the only way it could get
incoherent is in the propagation step in line 2. (The guess-
ing step cannot create incoherence, since exactly one truth
value is guessed for v and a.) However, the propagators
are defined such that they infer only assignments (triples)
that are necessary for the given F . Consequently, the given
interpretation set V is such that either there is no realiza-
tion within the ADF fragment corresponding to formalism
F (that is, the formalism propagator derived the incoher-
ence) or there is no σ-characterization for V with respect to
general ADFs (that is, the semantics propagator derived the
incoherence). In any case, V is not σ-realizable for F .

4 Implementation
As Algorithm 1 is based on propagation, guessing, and

checking it is perfectly suited for an implementation us-
ing answer set programming (ASP) (Niemelä, 1999; Marek
and Truszczyński, 1999) as this allows for exploiting con-
flict learning strategies and heuristics of modern ASP solv-
ers. Thus, we developed ASP encodings in the Gringo
language (Gebser et al., 2012) for our approach. Similar as
the algorithm, our declarative encodings are modular, con-
sisting of a main part responsible for constructing set F and
separate encodings for the individual propagators. If one
wants, e.g., to compute an AF realization under admissible
semantics for a set V of interpretations, an input program en-
coding V is joined with the main encoding, the propagator
encoding for admissible semantics as well as the propag-
ator encoding for AFs. Every answer set of such a program
encodes a respective characterization function. Our ASP en-
coding for preferred semantics is based on the admissible
encoding and guesses further interpretations following the

essential idea of Algorithm 2. For constructing a knowledge
base with the desired semantics, we also provide two ASP
encodings that transform the output to an ADF in the syntax
of the DIAMOND tool (Ellmauthaler and Strass, 2014), re-
spectively an AF in ASPARTIX syntax (Egly, Gaggl, and
Woltran, 2010; Gaggl et al., 2015). Both argumentation
tools are based on ASP themselves. The encodings for all
the semantics and formalisms we covered in the paper can
be downloaded from http://www.dbai.tuwien.ac.
at/research/project/adf/unreal/. A selection
of them is depicted in Figure 3 on the next page.

5 Expressiveness Results
In this section we briefly present some results that we have
obtained using our implementation. We first introduce some
necessary notation to describe the relative expressiveness of
knowledge representation formalisms (Gogic et al., 1995;
Strass, 2015). For formalisms F1 and F2 with semantics
σ1 and σ2, we say that F2 under σ2 is at least as express-
ive as F1 under σ1 and write Fσ1

1 ≤e Fσ2
2 if and only if

Σσ1

F1
⊆ Σσ2

F2
, where ΣσF = {σ(kb) | kb ∈ F} is the signa-

ture of F under σ. As usual, we define F1 <e F2 iff
F1 ≤e F2 and F2 6≤e F1.

We now start by considering the signatures of AFs,
SETAFs and (B)ADFs for the unary vocabulary {a}:

Σadm
AF = Σadm

SETAF = {{u} , {u, t}}
Σcom

AF = Σcom
SETAF = {{u} , {t}}

Σprf
AF = Σprf

SETAF = {{u} , {t}}
Σmod

AF = Σmod
SETAF = {∅, {t}}

Σadm
ADF = Σadm

BADF = Σadm
AF ∪ {{u, f} , {u, t, f}}

Σcom
ADF = Σcom

BADF = Σcom
AF ∪ {{f} , {u, t, f}}

Σprf
ADF = Σprf

BADF = Σprf
AF ∪ {{f} , {t, f}}

Σmod
ADF = Σmod

BADF = Σmod
AF ∪ {{f} , {t, f}}

The following result shows that the expressiveness of the
formalisms under consideration is in line with the amount of
restrictions they impose on acceptance formulas.
Theorem 8. For any σ ∈ {adm, com, prf ,mod}:
1. AFσ <e SETAFσ .
2. SETAFσ <e BADFσ .
3. BADFσ <e ADFσ .
Proof. (1) AFσ ≤e SETAFσ is clear (by modeling indi-
vidual attacks via singletons). For SETAFσ 6≤e AFσ the
witnessing model sets over vocabulary A = {a, b, c} are
{uuu, ttf , tft, ftt} ∈ ΣσSETAF \ ΣσAF and {ttf , tft, ftt} ∈

92 characterizing realizability in abstract argumentation

Main Encoding

1 % s/1 declares statements

2 % a cterm assigns a truth value to a statement

3 cterm(A, t(A)) :- s(A).

4 cterm(A, f(A)) :- s(A).

5

6 % int/1 declares interpretations

7 % an interpretation is an ordered list of assignments

8 % of statements to one of two truth values

9 % unassigned statements have truth value u

10 int(nil).

11 int((AS, I)) :- s(A), cterm(A, AS),

12 int(I), smaller(A, I).

13 smaller(A, nil) :- s(A).

14 smaller(A, (H, I)) :- s(A), cterm(T, H), A < T, int(I).

15

16 % check whether an interpretation contains an assignment

17 member(T, (T, I)) :- int((T, I)).

18 member(T, (X, I)) :- int((X, I)), member(T, I).

19

20 % an interpretation is two-valued

21 int2(I) :- int(I), not hasU(I).

22 hasU(I) :- hasU(I, A).

23 hasU(I, A) :- int(I), s(A), not member(t(A), I),

24 not member(f(A), I).

25

26 % the information ordering on interpretations

27 ileq(I, J) :- int(I), int(J), not nileq(I, J).

28 nileq(I, J) :- int(I), int(J), member(T, I),

29 not member(T, J).

30

31 % guess a characterization function

32 1 { ch(A, I, t); ch(A, I, f) } 1 :- s(A), int2(I).

Two-Valued Model Encoding

1 % only sets of two-valued interpretations realizable

2 :- in(I), not int2(I).

3

4 % propagation members

5 ch(A, I, t) :- int2(I), in(I), s(A), member(t(A), I).

6 ch(A, I, f) :- int2(I), in(I), s(A), member(f(A), I).

7

8 % propagation non-members

9 ch(A, I, t) :- int2(I), not in(I), member(f(A), I),

10 ch(B, I, t) : s(B), member(t(B), I);

11 ch(C, I, f) : s(C), member(f(C), I), C != A.

12 ch(A, I, f) :- int2(I), not in(I), member(t(A), I),

13 ch(B, I, f) : s(B), member(f(B), I);

14 ch(C, I, t) : s(C), member(t(C), I), C != A.

BADF Encoding

1 % if a statement sometimes attacks, it cannot be

2 % supporting, therefore must be attacking

3 att(B, A) :- ch(A, I, t), ch(A, J, f), diffFT(I, J, B).

4

5 % if a statement sometimes supports, it cannot be

6 % attacking, therefore it must be supporting

7 sup(B, A) :- ch(A, I, f), ch(A, J, t), diffFT(I, J, B).

8

9 % derives two-valued I and J that differ only for A

10 diffFT(I, J, A) :- int2(I), int2(J), member(f(A), I, B),

11 member(t(A), J, B).

12 member(T, (T, I), I) :- int((T, I)).

13 member(T, (X, I), (X, B)) :- int((X, I)),

14 member(T, I, B), X != T.

15

16 % if a statement is supporting/attacking for another,

17 % then this information can be propagated

18 ch(A, J, f) :- att(B, A), ch(A, I, f), diffFT(I, J, B).

19 ch(A, J, t) :- sup(B, A), ch(A, I, t), diffFT(I, J, B).

Figure 3: Selected ASP encodings in clingo 4 syntax. The main encoding implements Algorithm 1, the remaining encodings
implement the two-valued model semantics propagator, and the BADF formalism propagator, respectively.

ΣτSETAF \ ΣτAF with σ ∈ {adm, com} and τ ∈ {prf ,mod}.
By each pair of arguments of A being t in at least
one model, a realizing AF cannot feature any attack,
immediately giving rise to the model ttt. The re-
spective realizing SETAF is given by the attack relation
R = {({a, b}, c), ({a, c}, b), ({b, c}, a)}.

(2) It is clear that SETAFσ ≤e BADFσ holds (all parents
are always attacking). For BADFσ 6≤e SETAFσ the respect-
ive counterexamples can be read off the signatures above:
for σ ∈ {adm, com} we find {u, t, f} ∈ ΣσBADF \ ΣσSETAF
and for τ ∈ {prf ,mod} we find {t, f} ∈ ΣτBADF \ ΣτSETAF.

(3) For σ = mod the result is known (Strass, 2015, The-
orem 14); for the remaining semantics the model sets wit-
nessing ADFσ 6≤e BADFσ over vocabulary A = {a, b} are

{uu, tu, tt, tf , fu} ∈ Σadm
ADF \ Σadm

BADF

{uu, tu, tt, tf , fu} ∈ Σcom
ADF \ Σcom

BADF

{tt, tf , fu} ∈ Σprf
ADF \ Σprf

BADF

A witnessing ADF is given by ϕa = a and ϕb = a↔ b. �

Theorem 8 is concerned with the relative expressiveness
of the formalisms under consideration, given a certain se-
mantics. Considering different semantics we find that for all
formalisms the signatures become incomparable:

Proposition 9. Fσ1
1 6≤e Fσ2

2 and Fσ2
2 6≤e Fσ1

1 for all form-
alisms F1,F2 ∈ {AF,SETAF,BADF,ADF} and all se-
mantics σ1, σ2 ∈ {adm, com, prf ,mod} with σ1 6= σ2.

Proof. First, the result for adm and com follows by
{u, t} ∈ Σadm

AF , but {u, t} /∈ Σcom
ADF and {t} ∈ Σcom

AF , but
{t} /∈ Σadm

ADF . Moreover, taking into account that the set
of preferred interpretations (resp. two-valued models) al-
ways forms a≤i-antichain while the set of admissible (resp.
complete) interpretations never does, the result follows for
σ1 ∈ {adm, com} and σ2 ∈ {prf ,mod}. Finally, since a
kb ∈ F may not have any two-valued models and a pre-
ferred interpretation is not necessarily two-valued, the result
for prf and mod follows. �

Disregarding the possibility of realizing the empty set of
interpretations under the two-valued model semantics, we

93

obtain the following relation for ADFs.

Proposition 10. (Σmod
ADF \ {∅}) ⊆ Σprf

ADF.

Proof. Consider some V ∈ Σmod
ADF with V 6= ∅. Clearly

V ⊆ V2 and by Proposition 4 there is a mod -
characterization f : V2 → V2 for V , that is, f(v) = v
iff v ∈ V . Define f ′ : V2 → V2 such that f ′(v) = f(v) = v
for all v ∈ V and f ′(v)(a) = ¬v(a) for all v ∈ V \ V and
a ∈ A. Now it holds that f ′ is an adm-characterization
of V ′ = {v ∈ V | ∀v2 ∈ [v]2 : v2 ∈ V } ∪ {vu}. Since
max≤i V

′ = V we get that the ADF D with acceptance
formula ϕf

′
a for each a ∈ A has prf (D) = V whence

V ∈ Σprf
ADF. �

In contrast, this relation does not hold for AFs, which was
shown for extension-based semantics by Linsbichler, Span-
ring, and Woltran (2015) (Theorem 5) and immediately fol-
lows for the three-valued case.

6 Discussion
We presented a framework for realizability in which AFs,
SETAFs, BADFs and general ADFs can be treated in a uni-
form way. The centerpiece of our approach is an algorithm
for deciding realizability of a given interpretation-set in a
formalism under a semantics. The algorithm makes use of
so-called propagators, by which it can be adapted to the dif-
ferent formalisms and semantics. We also presented an im-
plementation of our framework in answer set programming
and several novel expressiveness results that we obtained us-
ing our implementation. In related work, Polberg (2016)
studies a wide range of abstract argumentation formalisms,
in particular their relationship with ADFs. This can be the
basis for including further formalisms into our realizability
framework: all that remains to do is figuring out suitable
ADF fragments and developing propagators for them, just
like we did exemplarily for Nielsen and Parsons’s SETAFs.
For further future work, we could also streamline existing
propagators such that they do not only derive absolutely ne-
cessary assignments, but also logically weaker conclusions,
such as disjunctions of (non-)assignments.

References
Amgoud, L., and Cayrol, C. 2002. A reasoning model based on the

production of acceptable arguments. Ann. Math. Artif. Intell. 34(1–
3):197–215.

Baroni, P.; Cerutti, F.; Giacomin, M.; and Guida, G. 2011. AFRA: Ar-
gumentation framework with recursive attacks. Int. J. Approx. Reas-
oning 52(1):19–37.

Baumann, R.; Dvořák, W.; Linsbichler, T.; Strass, H.; and Woltran, S.
2014. Compact argumentation frameworks. In Proc. ECAI, volume
263 of FAIA, 69–74.

Brewka, G., and Woltran, S. 2010. Abstract Dialectical Frameworks. In
Proc. KR, 102–111.

Brewka, G.; Ellmauthaler, S.; Strass, H.; Wallner, J. P.; and Woltran, S.
2013. Abstract Dialectical Frameworks Revisited. In Proc. IJCAI,
803–809.

Brewka, G.; Polberg, S.; and Woltran, S. 2014. Generalizations of Dung
frameworks and their role in formal argumentation. IEEE Intelligent
Systems 29(1):30–38.

Caminada, M., and Gabbay, D. 2009. A logical account of formal argu-
mentation. Studia Logica 93(2-3):109–145.

Cayrol, C., and Lagasquie-Schiex, M. 2005. On the acceptability of
arguments in bipolar argumentation frameworks. In Proc. ECSQARU,
volume 3571 of LNCS, 378–389.

Dung, P. M. 1995. On the acceptability of arguments and its funda-
mental role in nonmonotonic reasoning, logic programming and n-
person games. Artif. Intell. 77(2):321–357.

Dunne, P. E.; Dvořák, W.; Linsbichler, T.; and Woltran, S. 2013. Char-
acteristics of multiple viewpoints in abstract argumentation. In Proc.
DKB, 16–30.

Dunne, P. E.; Dvořák, W.; Linsbichler, T.; and Woltran, S. 2015. Char-
acteristics of multiple viewpoints in abstract argumentation. Artif.
Intell. 228:153–178.

Dyrkolbotn, S. K. 2014. How to Argue for Anything: Enforcing Arbit-
rary Sets of Labellings using AFs. In Proc. KR, 626–629.

Egly, U.; Gaggl, S. A.; and Woltran, S. 2010. Answer-set programming
encodings for argumentation frameworks. Argument & Computation
1(2):147–177.

Ellmauthaler, S., and Strass, H. 2014. The DIAMOND system for
computing with abstract dialectical frameworks. In Proc. COMMA,
volume 266 of FAIA, 233–240.

Gaggl, S. A.; Manthey, N.; Ronca, A.; Wallner, J. P.; and Woltran, S.
2015. Improved answer-set programming encodings for abstract ar-
gumentation. TPLP 15(4-5):434–448.

Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T. 2012. Answer
Set Solving in Practice. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan and Claypool Publishers.

Gogic, G.; Kautz, H.; Papadimitriou, C.; and Selman, B. 1995. The
comparative linguistics of knowledge representation. In Proc. IJCAI,
862–869.

Gomes, C. P.; Kautz, H. A.; Sabharwal, A.; and Selman, B. 2008.
Satisfiability Solvers. In Handbook of Knowledge Representation,
volume 3 of Foundations of AI. Elsevier. 89–134.

Linsbichler, T.; Spanring, C.; and Woltran, S. 2015. The hidden power
of abstract argumentation semantics. In Proc. TAFA, volume 9524 of
LNCS, 146–162.

Marek, V. W., and Truszczyński, M. 1999. Stable models and an altern-
ative logic programming paradigm. In In The Logic Programming
Paradigm: a 25-Year Perspective. Springer. 375–398.

Modgil, S. 2009. Reasoning about preferences in argumentation frame-
works. Artif. Intell. 173(9–10):901–934.

Nielsen, S. H., and Parsons, S. 2006. A generalization of Dung’s ab-
stract framework for argumentation: Arguing with sets of attacking
arguments. In Proc. ArgMAS, volume 4766 of LNCS, 54–73.

Niemelä, I. 1999. Logic programs with stable model semantics as a con-
straint programming paradigm. Ann. Math. Artif. Intell. 25(3-4):241–
273.

Polberg, S. 2016. Developing and Extending the Abstract Dialectical
Framework. Ph.D. Dissertation, TU Wien, Austria. Upcoming.

Pührer, J. 2015. Realizability of Three-Valued Semantics for Abstract
Dialectical Frameworks. In Proc. IJCAI, 3171–3177.

Strass, H., and Wallner, J. P. 2015. Analyzing the Computational Com-
plexity of Abstract Dialectical Frameworks via Approximation Fix-
point Theory. Artif. Intell. 226:34–74.

Strass, H. 2015. Expressiveness of Two-Valued Semantics for Abstract
Dialectical Frameworks. J. Artif. Intell. Res. (JAIR) 54:193–231.

94 characterizing realizability in abstract argumentation

Using Enthymemes to Fill the Gap between Logical Argumentation and Revision
of Abstract Argumentation Frameworks

Jean-Guy Mailly
Institute of Information Systems

TU Wien, Autria
jmailly@dbai.tuwien.ac.at

Abstract

In this paper, we present a preliminary work on an ap-
proach to fill the gap between logic-based argumenta-
tion and the numerous approaches to tackle the dynam-
ics of abstract argumentation frameworks. Our idea is
that, even when arguments and attacks are defined by
means of a logical belief base, there may be some uncer-
tainty about how accurate is the content of an argument,
and so the presence (or absence) of attacks concerning
it. We use enthymemes to illustrate this notion of un-
certainty of arguments and attacks. Indeed, as argued in
the literature, real arguments are often enthymemes in-
stead of completely specified deductive arguments. This
means that some parts of the pair (support, claim) may
be missing because they are supposed to belong to some
“common knowledge”, and then should be deduced by
the agent which receives the enthymeme. But the per-
ception that agents have of the common knowledge may
be wrong, and then a first agent may state an enthymeme
that her opponent is not able to decode in an accurate
way. It is likely that the decoding of the enthymeme by
the agent leads to mistaken attacks between this new ar-
gument and the existing ones. In this case, the agent can
receive some information about attacks or arguments
acceptance statuses which disagree with her argumenta-
tion framework. We exemplify a way to incorporate this
new piece of information by means of existing works on
the dynamics of abstract argumentation frameworks.

Introduction
Argumentation frameworks (AFs) are a convenient way to
represent conflicting information and to deduce which sub-
set of the information can be inferred. For instance, they can
be used to model dialogs between several agents (Amgoud
and Hameurlain 2006) or to analyze on-line discussion be-
tween social network users (Leite and Martins 2011). Ar-
gumentation can also be useful in a mono-agent setting, for
instance to infer non-trivial conclusions from an inconsistent
knowledge base (Besnard and Hunter 2001).

The domain called dynamics of argumentation has
become a hot topic in recent years, with numerous
publications about it. The first ones consider really

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

classical debate scenarios as the source of the dy-
namic process (Boella, Kaci, and van der Torre 2009a;
2009b; Cayrol, de Saint-Cyr, and Lagasquie-Schiex 2010;
Baumann and Brewka 2010; Bisquert et al. 2011; 2013;
Baumann 2012; Booth et al. 2013). These approaches are
perfectly well-suited for classical exchange of arguments
between agents. Then, some approaches have proposed
to consider new scenarios, closer to what happens with
belief change in logical settings (Alchourrón, Gärdenfors,
and Makinson 1985; Katsuno and Mendelzon 1991;
1992): these approaches propose to question the existing
relation between arguments, and to modify this relation
if it is required (Doutre, Herzig, and Perrussel 2014;
Nouioua and Würbel 2014; Coste-Marquis et al. 2014a;
2014b; 2015; Baumann and Brewka 2015;
Diller et al. 2015).

These works directly deal with the structure of the
abstract AFs. An interesting question is “What does AF
revision mean when we consider logic-based AFs?”.
Indeed, it is not obvious that attacks between arguments
can be changed, since they stem from the logical inference
relation; for instance, if arguments a and b attack each
other because their claims are the negation of each other
(rebuttal attack), then it is not accurate to consider that the
attack between a and b could be removed. But this is only
the case when we consider completely specified deductive
arguments (Besnard and Hunter 2001). As argued in the
literature (Hunter 2007), the arguments which are used in
real situations are often enthymemes, which are partially
specified arguments: some parts of the support or some
parts of the claim are not described, because it is supposed
that they belong to some “common knowledge”. There may
be different reasons for an agent not to share some part of
her knowledge, such as some cost on the communication
process. Then, the agent who receives an enthymeme must
decide how to complete the content of the enthymeme to
be able to use it. But if the missing formulae to complete
the enthymeme are not part of the agent’s beliefs (or at
least, are not considered by the agent as the most accurate
way to complete the enthymeme), then she will use a badly
completed enthymeme in her argumentation framework.
We see with this situation that, even with an underlying
logical belief base, the nature of arguments and attacks is

95

not absolute; it depends on the agent’s beliefs and on her
way to complete enthymemes.

So we propose to consider the use of enthymemes in
the argumentation process to explain the questionability of
some attacks. We illustrate the possibility that a logic-based
argumentation framework contains mistaken attacks. Then
we show that the existing work on the dynamics of AFs
can be used on such enthymeme-based AFs, as soon as
a distinction between classical deductive arguments and
enthymemes is done in the abstract AF, and that this
distinction is used in the revision process.

The paper is organized as follows. The first section
presents the background notions required to the understand-
ing of the paper. In particular, we describe briefly belief revi-
sion, abstract argumentation and revision of AFs, and logic-
based argumentation. Then in the second section, we focus
on enthymemes in logic-based AFs; we explain how using
enthymemes can be a source of mistaken attacks in the re-
sulting AF. The following section illustrates the revision pro-
cess on logic-based AFs which contain enthymemes. After
the description of a basic approach in which each attack con-
cerning an enthymeme is questionable, we propose a refine-
ment of this approach based on the notion of fixed part of
an enthymeme. Finally, the last section concludes the paper
and sketches some interesting future work.

Background
Belief Revision
Belief revision is well-known when an agent’s beliefs are
represented in a logical setting. The intuitive idea is “How
can an agent incorporate a new piece of information into her
beliefs?”, which is not a trivial question when the agent’s
previous beliefs and the new piece of information are con-
flicting. One of the most influencial works on this topic is the
AGM framework (Alchourrón, Gärdenfors, and Makinson
1985), which gives rationality postulates for belief change
operators, when the beliefs are represented as deductively
closed sets of formulae. Here we are interested in the adap-
tation of AGM revision to finite propositional logic by Kat-
suno and Mendelzon (1991). They explain that revising a
formula ϕ by a formula α is equivalent to selecting some
models of α which are minimal w.r.t. some plausibility rela-
tion. This relation has to satisfy some properties.
Definition 1 (Katsuno and Mendelzon 1991). A faithful as-
signment is a mapping from a formula ϕ to a total pre-order
between interpretations ≤ϕ such that:

1. if I |= ϕ and I ′ |= ϕ, then I 'ϕ I ′;
2. if I |= ϕ and I ′ 6|= ϕ, then I <ϕ I ′;
3. if ϕ ≡ ϕ′, then ≤ϕ=≤ϕ′ .
Then, a KM revision operator ◦ is a mapping from two for-
mulae ϕ, α to a new formula such that

mod (ϕ ◦ α) = min(mod (α),≤ϕ)

For instance, the Dalal revision operator can be defined
through the pre-order built on the Hamming distance.

Definition 2 (Hamming 1950; Dalal 1988). The Hamming
distance between two propositional interpretations I, I ′ is
the number of assignments which differ between I and I ′,
formally: dH(I, I ′) = |(I\I ′) ∪ (I ′\I)|.
The total pre-order ≤dHϕ is defined by

I ≤dHϕ I ′ iff min
J∈ mod (ϕ)

(dH(I, J)) ≤ min
J∈ mod (ϕ)

(dH(I ′, J))

The Dalal revision operator ◦D is a mapping from two for-
mulae ϕ, α to a new formula such that

mod (ϕ ◦D α) = min(mod (α),≤dHϕ)

Let us illustrate the behavior of the Dalal revision opera-
tor.
Example 1. Consider V = {a, b, c, d} and ϕ = [(a ∧
b) ∨ (¬a ∧ c) ∨ ¬(b ∨ (a ∧ c))] ∧ ¬d. The models of
ϕ are {{a}, {c}, {a, b}, {b, c}, {a, b, c}}. We revise ϕ by
α = a ∧ ¬b ∧ c. The models of α are {{a, c}, {a, c, d}}.
Table 1 gives the Hamming distance between models of ϕ
and models of α.

{a, c} {a, c, d}
∅ 2 3
{a} 1 2
{c} 1 2
{a, b} 2 3
{b, c} 2 3
{a, b, c} 1 2

Table 1: Hamming distance between models of ϕ and α

Since the minimal Hamming distance between {a, c} and
a model of ϕ is 1 (dH({a, c}, {a}) for instance), while the
distance between {a, c, d} and any model of ϕ is at least
2, then {a, c} <dHϕ {a, c, d}, and so mod (ϕ ◦Da α) =
{{a, c}}.

Abstract Argumentation and AF Revision
An abstract AF is a directed graph which represents the ar-
guments and the attacks between them. The usual problem to
solve with such an abstract AF is “How to determine which
arguments are accepted?”. This question is tackled in the
seminal paper by Dung (1995).
Definition 3 (Dung 1995). An argumentation framework
(AF) is a pair F = 〈A,R〉 where A is a set of abstract
entities called arguments, and R ⊆ A × A is the attack
relation which represents the conflicts between arguments.
Given a semantics σ, the σ-extensions of F , denoted σ(F),
are subsets of A which can be accepted. An argument is
then skeptically accepted by F w.r.t. σ iff it belongs to each
σ-extension of F .

In this paper, we illustrate our approach on the stable se-
mantics: S ⊆ A is a stable extension of F (denoted by
S ∈ st(F)) iff
• 6 ∃x, y ∈ S s.t. (x, y) ∈ R;
• ∀y ∈ A\S, ∃x ∈ S s.t. (x, y) ∈ R.

96 using enthymemes to fill the gap between logical argumentation and revision of abstract . . .

Example 2. Given the set of arguments A = {x, y, z,
t, u}, the AF F1 = 〈A,R〉 with R = {(x, y), (x, t),
(y, x), (y, z), (z, u), (t, u)} is given in Figure 1.

u

z

tx

y

Figure 1: The AF F1

Its stable extensions are st(F1) = {{x, z}, {y, t}}.
As explained in the introduction, the question of change

in AFs has been tackled by several approaches. Here we
use the translation-based revision from (Coste-Marquis et
al. 2014b). The idea of this method is to translate the AF
and the semantics into a propositional formula, to use a KM
revision operator to perform the expected change, and then
to decode the models of the revised formula to obtain a set
of revised AFs. The propositional encoding is a general-
ization of a result from Besnard and Doutre (2004). They
have defined a formula Ξ, built on propositional variables
corresponding to the arguments, such that the set of mod-
els of Ξ exactly correspond to the set of stable extensions
of an AF. Coste-Marquis et al. (2014b) generalize this en-
coding with the addition of two other kinds of variables
V = {attx,y | x, y ∈ A} ∪ {accx | x ∈ A}. attx,y means
that there is an attack from the argument x to the argument y,
and accx means that the argument x is skeptically accepted.

Definition 4 (Coste-Marquis et al. 2014b). Given an AF
F = 〈A = {x1, . . . , xn}, R〉, the stable encoding of F is

fst(F) = (
∧

(x,y)∈R
attx,y) ∧ (

∧

(x,y)/∈R
¬attx,y) ∧ thst(A)

where

thst(A) =
∧
x∈A[accx ⇔ ∀x1, . . . ,∀xn,

(
∧
y∈A(y ⇔ ∧

z∈A(attz,y ⇒ ¬z))⇒ x)]

In general, fσ(F) can be defined for any semantics σ as
soon as the formula Ξ exists; for semantics with a complex-
ity higher than NP, we can consider for instance QBF en-
codings to define Ξ.

Then, the revision operator is defined as follow:

Definition 5 (Coste-Marquis et al. 2014b). Given ◦ a KM
revision operator and ϕ a propositional formula built from
the set of variables V , the translation-based revision opera-
tor ?◦ is defined as

F ?◦ ϕ = dec(fσ(F) ◦ (ϕ ∧ thσ(A)))

with dec a mapping from a formula ψ to a set of AFs F such
that each AF F ′ ∈ F corresponds to one of the models ω of
ψ: (x, y) appears in F ′ iff attx,y is true in ω.

This general definition allows to change any attack and ar-
gument status as long as it is compatible with σ. If additional

constraints should be satisfied,1 the use of a constrained ver-
sion is possible:
Definition 6 (Coste-Marquis et al. 2014b). Given ◦ a KM
revision operator and ϕ, µ two propositional formulae built
from the set of variables V , the constrained translation-
based revision operator ?µ◦ is defined as

F ?µ◦ ϕ = dec(fσ(F) ◦ (ϕ ∧ thσ(A) ∧ µ))

To conclude, let us mention a particular revision operator
proposed by (Coste-Marquis et al. 2014b): we call ?att (resp.
?µatt) the translation-based (resp. constrained translation-
based) revision operator which gives priority to the mini-
mal change of the attack relation. This operator is similar to
the Dalal-based revision revision operator ?◦D , but it uses a
weighted version of the Hamming distance such that chang-
ing the value of a single attx,y variable is more expensive
than changing the value of each accx variable.
Example 3. We consider the AF F1 given in Figure 1.
We suppose the existence of an integrity constraint attt,u ∧
attz,u, which means that the attacks from t and z to u must
not be removed. The result of the revision F1 ?

µ
◦D accu is

the AF F2 described in Figure 2. Now the extensions are

u

z

tx

y

Figure 2: F2 = F ?µ◦D accu

st(F2) = {{x, u}, {y, u}}, so u is skeptically accepted.
We focus on this kind of revision operators because

(Coste-Marquis et al. 2014b) already proposes a way to in-
corporate a constraint on the attack relation, which is re-
quired by our approach. Other revision or update operators
could be used instead, but we should adapt their definition
to take into account the constraint.

Logic-based Arguments: Deductive Arguments
The question of the exact nature of arguments and attacks is
tackled by several approaches which can be gathered under
the name structural argumentation. Here we focus on one of
the most prominent ones: deductive argumentation (Besnard
and Hunter 2001).
Definition 7 (Besnard and Hunter 2001). A deductive argu-
ment built from a belief base ∆ is a pair 〈Φ, α〉, where Φ is
called the support and α the claim, such that:

1. Φ ⊆ ∆,
2. Φ 6` ⊥,
3. Φ ` α,
4. Φ is minimal with respect to⊆ among the sets of formulae

which satisfy items 1. 2. and 3.
1Such as external constraint depending on the particular appli-

cation, or some rules of the world.

97

There is an intuitive explanation to this definition. First
the agent is supposed to use her beliefs to justify her claim,
which explains the first condition. The second and third
conditions guarantee that the claim is actually supported by
the beliefs of the agent, but not by conflicting beliefs (for
instance, the sentence “It is raining and it is not raining,
so I am the Queen of England.” is not an argument at all).
Finally, the last condition ensures that there is no useless
piece of information in the support: “It is raining, when it is
raining I should use an umbrella, and I love chocolate. So I
will use my umbrella.” is not accurate either.

The conflicts between deductive arguments may have dif-
ferent natures. The most general sort of conflict is defined as
follow:

Definition 8 (Besnard and Hunter 2001). A defeater for
an argument 〈Φ, α〉 is an argument 〈Φ′, α′〉 such that α′ `
¬(ϕ1 ∧ · · · ∧ ϕn), for some {ϕ1, . . . , ϕn} ⊆ Φ.

It is possible to use deductive arguments to build an argu-
ment tree with the arguments and counterarguments which
attack and defend a given claim.
We can also build a full argumentation framework from the
set of deductive arguments generated from a belief base.

Definition 9 (Besnard and Hunter 2014). Given A the
set of deductive arguments generated from the belief base
∆, the exhaustive graph associated with ∆ is the AF
F = 〈A,R〉 with R = {(x, y) ∈ A×A | x is a defeater for
y}.

Here we focus on the defeater relation, which is the most
general one, but exhaustive graphs can be generated with
another attack relation which guarantees additional proper-
ties for the defeaters (undercut, rebuttal, and so on). More-
over, these graphs may be infinite in general; Besnard and
Hunter propose an approach to circumvent this problem. See
(Besnard and Hunter 2014) for more details.

Enthymemes and their Role in Mistaken
Attacks

Intuitive Explanation
Before formalizing our approach, we want to explain intu-
itively, with natural language arguments, why agents can
disagree on the attack relation, and more generally why at-
tacks could be questionable. Let us consider the following
arguments:

(c) The US army is preparing a secret plan to retreat from
Afghanistan (source: Wikileaks).

(b) Our informed sources say that the Wikileaks documents
are fake (source: NY Times).

(a) The media cannot be trusted on military issues (source:
N. Chomsky).

Now we consider three agents A1, A2, A3; each of them
may have some personal beliefs which are not shared with
the other agents.

• A1 thinks that Chomsky is the most credible source, and
considers that Wikileaks is a media more reliable than NY
Times. So her AF is the one given in Fig. 3a.

• A2 thinks that Chomsky is a more credible source than
NY Times, and NY Times is a more credible source than
Wikileaks. She also believes that Wikileaks cannot be
seen as a media. So her AF is the one given in Fig. 3b.

• Finally, A3 thinks that NY Times is the most credible
source, and that Chomsky is not reliable on this topic. So
her AF is the one given in Fig. 3c.

These personal AFs may depend on many different parame-
ters (additional information which is not available to each
agent, preferences, context, previous experience of each
agent, and so on).

a b c

(a) Agent A1

a b c

(b) Agent A2

a b c

(c) Agent A3

Figure 3: Three Agents Disagreement

Of course, under the assumption that the agents share
all their knowledge and beliefs, the personal beliefs of the
agents can be represented as additional arguments and we
obtain a single AF representing the whole information about
a topic. But we think that this assumption is too strong for
at least three reasons. First, there may be technical issues
with this information sharing; for instance, there may be
some cost on communication between agents, or the global
amount of information in the network may be too important
to be stored in a centralized way. Then, for strategical rea-
sons, agents may choose not to share their knowledge and
beliefs. Also, if argument are mined from natural language
(for instance, for an analysis of social networks debates),
there are likely some implicit pieces of information used in
the argumentation process. This explains why some attacks
may be questionable.

For instance, if the agents A1 and A3 consider that agent
A2 is trustworthy, then they could have to change the at-
tack relation in their own AFs if they receive from agent A2

the information “c should be accepted”. On the opposite, if
agents vote to determine the arguments statuses, there will
be a majority of agents (A1 and A3) voting against c (mean-
ing that c is rejected in their AFs), so agent A2 should mod-
ify the attack relation to incorporate this piece of information
in her AF.

Enthymemes with partial support Now let us formalize
this notion of “arguments with partial knowledge”, and their
role in the existence of mistaken attacks. Hunter (2007) de-
fines what he calls approximate arguments, which are pairs
〈Φ, α〉 which do not satisfy the four conditions of deductive

98 using enthymemes to fill the gap between logical argumentation and revision of abstract . . .

arguments. He classifies them depending on which proper-
ties they satisfy, and then focuses on enthymemes. An en-
thymeme is a pair 〈Φ, α〉 such that Φ 6` α, but there is a set
Ψ ⊆ ∆ such that 〈Φ ∪ Ψ, α〉 is a deductive argument. In-
tuitively, Ψ represents some “common knowledge” that the
agent supposes to be known by her opponents. Then it is not
useful for the agent to state the full deductive argument to be
able to exchange information and to reach her goal (persuad-
ing her opponent, helping to take a decision, negotiating, and
so on).

Example 4. To illustrate this concept, we borrow a sim-
ple example of real life use of enthymemes from (Hunter
2007). Let us consider John and his wife Yoko, who is
going outside without an umbrella. If John tells her “You
should take your umbrella, because the weather report pre-
dicts rain”, there is no formal reason to consider that 〈Φ, α〉
(with Φ = {rain predicted} and α = take umbrella) is
an argument. It is in fact an enthymeme, because John sup-
poses that Ψ = {rain predicted ⇒ take umbrella} is
part of the knowledge he shares with Yoko.

One of the questions tackled in (Hunter 2007) is “How
does the agent knows that Ψ is actually part of the common
knowledge?”. Hunter supposes that each agent has a way to
evaluate the plausibility that a given formula will be part of
the knowledge shared between her and another agent.

Definition 10 (Hunter 2007). For each agent Ai whose be-
liefs are expressed in the propositional language L,

• ∆i ⊆ L denotes her own personal base,
• and for each other agent Aj , µi,j is a mapping from the

language L to [0, 1], such that µi,j(α) represents the cer-
tainty that α is common to both agents Ai and Aj .

On enthymemes and mistaken attacks This mapping
µi,j is used by the agent to build her arguments and decide
whether they should be fully specified deductive arguments,
or whether enthymemes can be used. The idea is simply to
keep only the formulae ϕ in the support such that the associ-
ated value µi,j(ϕ) is less than a given threshold τ ; the other
ones can be omited because they are supposed to be known
by agent Aj .

This process may lead to some problems in the exchange
of arguments. There are at least two sources of mistakes.

1. The mapping µi,j describes the perception that agent Ai
has of her common knowledge with Aj . If this percep-
tion is wrong, then there could be some exchange of en-
thymemes that the agent Aj cannot decode accurately.

2. Even with a good evaluation of the common knowledge
by µi,j , the choice of a bad threshold could also lead to
enthymemes that the other agent cannot decode.

In both these situations, agent Aj receives some “argument”
a = 〈Φ, α〉 which is not fully specified, and then she has
to complete the support with some Ψ′ from her own belief
base, which could of course lead to the addition of some
attacks from an existing argument b to this new argument
a, for instance if the claim of b is the formula ¬ψ, for
some ψ ∈ Ψ′. Even if for low-level treatments, it can be

represented as a′ = 〈Φ ∪ Ψ′, α〉 (for instance to determine
if possibly new incoming arguments attack it), at a higher
level it is still the argument a which is used. Indeed, this
a′ is not an argument that Aj has built by herself, since
some of the premises are not part of her belief base.2 Then,
agent Aj can receive a new piece of information about the
argument a which is incompatible with the attack from b to
a (the simplest example being “a and b should be accepted
together”). So she has to build a new internal state a′′

from a subset Ψ′′ from her belief base; for the same reason
as previously, at a higher level it is still the argument a
originally built from agent Ai’s beliefs.

Enthymemes with partial claim We have seen that en-
thymemes are a way to communicate arguments with partial
support. Black and Hunter (2012) also give some examples
of enthymemes with a partial claim. Borrowing their exam-
ple, let us consider the sentence α = “John has bought The
Times”. The enthymeme 〈{α},>〉 can be interpreted in at
least two ways, which lead to different claims:

1. 〈{α, α ⇒ β}, β〉 with β = “John has bought a copy of
the newspaper The Times”;

2. 〈{α, α⇒ γ}, γ〉 with γ = “John has bought the company
which publishes the newspaper The Times”.

Similarly to what we have described for enthymemes with
a partial support, if an agent receives an argument a which
is in fact an enthymeme with a partial claim, some mistakes
in the attack relation can appear. For instance, she may
consider that a attacks an argument b because some part of
b’s support is conflicting with the completed claim (either
β or γ in our example). If she later receives a piece of
information which is not compatible with this attack, then
she may have to consider a removal of this attack (for
instance, because the chosen claim is not accurate).

So we can formally define the class of enthymemes (with
partial claims and partial supports) as follows:

Definition 11 (Black and Hunter 2012). Given d = 〈Φ, α〉
a deductive argument, an approximate argument 〈Φ′, α′〉 is
an enthymeme for d iff Φ′ ⊂ Φ and α ` α′.

Stated otherwise, the pair 〈Φ, α〉 is an enthymeme for
〈Φ ∪ Ψ, α ∧ β〉, with Φ the partial support and α the par-
tial claim. In the rest of this paper, we call such a pair 〈Φ, α〉
a non-completed enthymeme and 〈Φ∪Ψ, α∧β〉 a completed
enthymeme. A completed enthymeme may not satisfy the
conditions stated in Definition 7, since the set of formulae Φ
comes from another agent’s belief base. Moreover, contrary
to a fully specified argument stemming from the agent’s be-
liefs, a completed enthymeme can be questioned.

2To do this, it is a logical belief revision/expansion/update
which should be performed, and this would likely have some side
effects on the whole belief base, not only on the formulae involed
in argument a.

99

Dynamics of AFs and Enthymemes
Building a Dung’s AF from Enthymemes
For several reasons, the use of an abstract AF by the agent is
interesting, even when she uses an underlying belief base.
For instance, the developement of efficient approaches to
solve abstract argumentation problems permits to obtain the
conclusion of the agent’s AF with respect to several seman-
tics and inference policies (see for instance the competition
of argumentation solvers (Thimm and Villata 2015)). But to
avoid the loss of information about the nature of arguments
and attacks, we propose to refine the definition of the AF.

Definition 12. Given D and E which denote respec-
tively the agent’s deductive arguments and enthymemes, the
agent’s enthymeme-based AF is F (D,E) = 〈A,R〉 with

• A = D ∪ E;
• R = RD ∪RE ;
• RD ⊆ D×D the set of certain attacks (between deductive

arguments);
• RE ⊆ (A × A)\(D ×D) the set of questionable attacks

(concerning at least one enthymeme).

Computing the extensions of such an AF is identical to the
process for classical Dung’s AFs; differentiating both kinds
of attacks is useful only for the dynamics scenarios such as
revision.

In this setting, each attack can be added or removed as
soon as it concerns at least one enthymeme. We will refine
this later.

Example 5. Let F3 be the enthymeme-based AF presented
in Fig. 4. Arguments with rounded corners are the en-
thymemes while the other ones are deductive arguments.
Similarly, the dashed arrows represent the questionable at-
tacks, while the other ones are the certain attacks. In this
example, we suppose that the agent has received the en-
thymemes in the following way:

• e1 = 〈{α}, γ〉, which has been completed by Ψ1 = {α⇒
β, β ⇒ γ};

• e2 = 〈{η},>〉, which has been completed by Ψ2 = {η ⇒
¬ε} in the support and ¬ε in the claim.

e1 = 〈{α, α⇒ β, β ⇒ γ}, γ〉

d1 = 〈{δ, δ ⇒ (β ∧ ¬γ)}, β ∧ ¬γ〉

d2 = 〈{ε, ε⇒ ¬δ},¬δ〉

e2 = 〈{η, η ⇒ ¬ε},¬ε〉

Figure 4: The Enthymeme-based AF F3

With this AF, the accepted arguments are {e2, d1}.

Applying Dynamics of Abstract AFs to
Enthymeme-based AFs
The existence of mistaken attacks in an enthymeme-based
AF can be tackled through some approaches of the dy-
namics of abstract argumentation (Bisquert et al. 2013;
Doutre, Herzig, and Perrussel 2014; Coste-Marquis et al.
2014a; 2014b; 2015). In the case when some arguments and
the relations between them are certain (in particular, when
they are fully specified arguments instead of enthymemes),
integrity constraints can simply be added to these revi-
sion/update/enforcement operators to ensure that forbidden
attacks will not be added, and mandatory attacks will not
be removed. Since it is already defined by (Coste-Marquis
et al. 2014b), we will exemplify the dynamics of argumenta-
tion with their constrained revision approach, presented pre-
viously. We can encode an integrity constraint to fix the at-
tacks and non-attacks concerning the deductive arguments
into the setting from (Coste-Marquis et al. 2014b).

Definition 13. Given F (D,E) an enthymeme-based AF,
the integrity constraint on deductive arguments is

µD = (
∧

(x,y)∈RD

attx,y) ∧ (
∧

(x,y)∈(D×D)\RD

¬attx,y)

Now, if the agent receives some piece of information
about the arguments statuses or the attack relation, then she
can use the AF revision operator ?µD

att as defined previously
in the case when this new piece of information disagrees
with the current AF. This revision operator guarantees that
the relations between deductive arguments will not be mod-
ified during the revision process, which is desirable since
they are directly stemming from the logical inference rela-
tion.

Example 5 Continued. We continue the previous example.
The agent receives the piece of information “e1 should be
accepted”, which corresponds to the formula acce1 . The in-
tegrity constraint is attd2,d1 ∧ ¬attd1,d2 , which ensures that
the attacks between the deductive arguments d1 and d2 will
not be modified. The possible results are given in Fig. 5.

e1 d1 d2 e2

(a) F4

e1 d1 d2 e2

(b) F5

Figure 5: Possible Results of the Revision

The exact change operator which should be used de-
pends on the the properties expected for the process, for in-
stance it is well-known that performing an update (Bisquert
et al. 2013; Doutre, Herzig, and Perrussel 2014) is accurate
when the change is explained by an evolution of the world,
while performing a revision (Coste-Marquis et al. 2014a;
2014b) is accurate when the evolution only concerns the
agent’s beliefs about the world; thus these operations do not

100 using enthymemes to fill the gap between logical argumentation and revision of abstract . . .

satisfy the same properties. Similarly, among the different
approaches in the state of the art about the dynamics of
AFs, each of them do not have the same expressivity. For
instance, the revision approach described in (Coste-Marquis
et al. 2014a) permits to revise by a formula concerning the
extensions, while the translation-based approach illustrated
here permits to revise by a formula concerning skeptical ac-
ceptance of arguments and attacks at the same time. So, the
choice of a change operator completely depends on the ap-
plication and the agent’s needs and preferences. In the fol-
lowing, we continue to consider revision to be consistent
with the previous example, but update and extension en-
forcement (Baumann and Brewka 2010) could be considered
as well.

From Revised AFs to new Completed Enthymemes
After obtaining the result of the revision process, the agent
should now decode this result to determine which of the re-
vised AFs is the most plausible real AF corresponding to her
beliefs, and which enthymemes should be internally modi-
fied (and how they should be internally modified) to ensure
that the abstract AF and the logic-based AF coincide.
Definition 14. Let F be the set of AFs obtained from the
revision process. For each F ′ ∈ F , F ′ is called an accept-
able AF iff for each attack which differs between the original
AF F and F ′, the agent’s belief base contains some formu-
lae which allow to complete the enthymemes s.t. this new
completion is consistent with the attacks in F ′.
Example 5 Continued. Continuing the previous example,
let us suppose that the agent’s belief base contains the for-
mulae Ψ′ = {α ⇒ θ, θ ⇒ γ}. Then the enthymeme e1

can be completed into 〈{α, α⇒ θ, θ ⇒ γ}, γ〉, which leads
to the acceptable AF F4 given in Fig. 6a. Similarly, if the
agent’s belief base contains the formulae Ψ′′ = {η ⇒ ι},
then the agent can consider the acceptable AF F5 given in
Fig. 6b, since e2 can be completed into 〈{η, η ⇒ ι}, ι〉.

When the set of acceptable AFs is not a singleton, we can
consider two different solutions:
• the agent can keep the whole set as the result, to express

the uncertainy of the result of the revision, as suggested by
(Bisquert et al. 2013; Coste-Marquis et al. 2014a; 2014b;
Doutre, Herzig, and Perrussel 2014) which consider that
revising or updating an AF can lead to a set of AFs;

• the agent can use external information (preferences be-
tween AFs, preferences between formulae in the en-
thymemes, and so on) to select a single acceptable AF
as the result.

None of them is in general more desirable than the other
one, the choice depends on the situation (specific applica-
tion, user’s preferences, computational issues,. . .).

Refining Questionable Attacks
In the previous parts, we suppose that each attack con-
cerning an enthymeme is questionable. But we can be
more precise in the definition of the enthymeme-based AF.
Indeed, even when we consider an enthymeme e, some of
the attacks concerning it may be certain. We know that

e1 = 〈{α, α⇒ θ, θ ⇒ γ}, γ〉

d1 = 〈{δ, δ ⇒ (β ∧ ¬γ)}, β ∧ ¬γ〉

d2 = 〈{ε, ε⇒ ¬δ},¬δ〉

e2 = 〈{η, η ⇒ ¬ε},¬ε〉

(a) Instantiation of F4 by a New
Completion of e1

e1 = 〈{α, α⇒ β, β ⇒ γ}, γ〉

d1 = 〈{δ, δ ⇒ (β ∧ ¬γ)}, β ∧ ¬γ〉

d2 = 〈{ε, ε⇒ ¬δ},¬δ〉

e2 = 〈{η, η ⇒ ι}, ι〉

(b) Instantiation of F5 by a New
Completion of e2

Figure 6: Different Acceptable AFs

some parts of e, that we have called previously the partial
support and the partial claim, are fixed. If the reason of
an attack between e and a deductive argument is a logical
conflict involving one of these fixed parts of e, then this
attack can be considered as certain. Similarly, when we
consider another enthymeme e′, if there is an attack between
e and e′ which is stemming from the fixed part of e and
the fixed part of e′, then this attack cannot be removed either.

Let us first formalize this notion of fixed part.

Definition 15. If a = 〈Φ, α〉 is a deductive argument or
a non-completed enthymeme, then the fixed part of a is
fix(a) = Φ ∪ {α}.
If a = 〈Φ ∪ Ψ, α ∧ β〉 is a completed enthymeme, then
fix(a) = Φ ∪ {α}.

So if we consider a fully specified deductive argument or
a non-completed enthymeme, the fixed part is the set of all
the formulae involved in it. But when we consider an en-
thymeme completed with the agent’s beliefs, then the fixed
part is the set of formulae which appear in the enthymeme
that the agent has originally received, but do not appear in
the completed version of it.

Example 5 Continued. Let us consider again the arguments
d1, d2, e1 and e2. The fixed parts of the deductive arguments

101

are trivially the union of their support and their claim.
The result is more interesting for the enthymemes:

• fix(e1) = {α, γ};
• fix(e2) = {η,>};

Now let us define the involved part of an argument in an
attack.

Definition 16. Let a = 〈Φ, α〉 and b = 〈Φ′, α′〉 be two
arguments (deductive arguments, completed enthymemes or
non-completed enthymemes). If there is an attack between a
and b, then the involved part of a in the conflict between a
and b, denoted by invb(a), is the set Ψ ⊆ Φ∪ {α} such that
(
∧
ψ∈Ψ ψ) ∧ (

∧
ϕ′∈Φ′∪{α′} ϕ

′) ` ⊥ and Ψ is minimal w.r.t.
⊆. Otherwise, invb(a) = inva(b) = ∅.

So, if we have a rebuttal conflict between a and b (mean-
ing that the claims are the contradiction of each other) then
invb(a) = {α} and inva(b) = {α′}. If the conflict is
an undercut from a to b (meaning that the claim α of a
is conflicting with some part ϕ′ of the support of b), then
invb(a) = {α} and inva(b) = {ϕ′}.
Example 5 Continued. Now we can see which parts of the
arguments d1, d2, e1 and e2 are involved in conflicts. The
certain attack (d2, d1) comes from the contradiction between
δ and ¬δ, so invd1(d2) = {¬δ} and invd2(d1) = {δ}. Con-
cerning the questionable attacks, we have:

• inve1(d1) = {β ∧ ¬γ} and invd1(e1) = {β ⇒ γ};
• inve2(d2) = {ε} and invd2(e2) = {¬ε}.

Now we can refine the definition of an enthymeme-based
AF.

Definition 17. Given D and E which denote respec-
tively the agent’s deductive arguments and enthymemes, the
agent’s refined enthymeme-based AF is F (D,E) = 〈A,R〉
with

• A = D ∪ E;
• R = RC ∪RQ;
• RC = {(x, y) ∈ A × A | invy(x) ⊆
fix(x) and invx(y) ⊆ fix(y)}: the set of certain attacks;

• RQ ⊆ (A×A)\RC : the set of questionable attacks.

We use RD as a notation for RC ∩ (D×D), which is the set
of attacks between deductive arguments.

Of course, if an argument is a fully specified deductive
argument, then the part of it which is involved in conflicts is
a fixed part. So to refine the AF, we need to check if it is the
case with the enthymemes.

Example 5 Continued. Studying the relations between in-
volved parts and fixed parts for the enthymemes e1 and e2,
we obtain the following:

• invd1(e1) = {β ⇒ γ} 6⊆ fix(e1) = {α, γ};
• invd2(e2) = {¬ε} 6⊆ fix(e2) = {η,>}.
So none of the attacks (e2, d2) and (d1, e1) is certain.

But we can exhibit more interesting cases, for which the
use of a refined enthymeme-based AF leads to another result
than the basic enthymeme-based AF.

Example 6. Let d3 = 〈{ν, ν ⇒ ¬λ},¬λ〉 be a deductive
argument, and e3 = 〈{κ}, λ〉 an enthymeme, which can be
completed for instance by the additional support Φ′ = {κ⇒
λ}.
It is easy to see here that invd3(e3) = {λ} ⊆ fix(e3) =
{κ, λ}, so the conflict between d3 and e3 is not questionable,
and the AF corresponding to these arguments is F6 given in
Fig. 7.

e3 = 〈{κ, κ⇒ λ}, λ〉

d3 = 〈{ν, ν ⇒ ¬λ},¬λ〉

Figure 7: The Refined Enthymeme-based AF F6

When we consider these refined enthymeme-based AFs in
the revision process, the integrity constraint must be adapted
to take into account each certain attack, and not only the ones
between deductive arguments:

Definition 18. Given F (D,E) a refined enthymeme-based
AF, the integrity constraint on certain attacks is

µC = (
∧

(x,y)∈RC

attx,y) ∧ (
∧

(x,y)∈(D×D)\RD

¬attx,y)

This new constraint ensures that a certain attack will not
be removed during the revision process, and that attacks be-
tween deductive arguments will not be added if they do not
belong to the original AF.

Back to Chomsky Example
To conclude, let us formalize the intuitive “Chomsky ex-
ample”, showing the different completions of enthymemes
which lead to the different agents AFs. We use the fol-
lowing propositional variables: retreat means that the US
army will retreat;wkrmeans that the Wikileaks information
about retreat is true; wkf means that the Wikileaks docu-
ments are fake; mnt means that media can not be trusted on
military issues. As they are stated, the arguments a, b and c
which are shared by the agents are these ones:

a = 〈{mnt},>〉, b = 〈{wkf},>〉, c = 〈{wkr},>〉
All of them are enthymemes. For all the agents, the com-
pletion of c is 〈{wkr,wkr ⇒ retreat}, retreat〉. But they
disagree on the completion of the other enthymemes. Agent
A1 considers that a = 〈{mnt,mnt ⇒ ¬wkf,mnt ⇒
¬wkr},¬wkf ∧ ¬wkr〉 and b = 〈{wkf},>〉. Agent A2

completes the enthymemes as follows: a = 〈{mnt,mnt⇒
¬wkf},¬wkf〉 and b = 〈{wkf,wkf ⇒ ¬wkr},¬wkr〉.

Finally, agent A3 uses these completions of enthymemes:
a = 〈{mnt},>〉 and b = 〈{wkf,wkf ⇒ ¬wkr},¬wkr〉.

These completions of enthymemes lead to the AFs
described in Figure 3, with all arguments which are en-
thymemes, and all attacks which are questionable. So here,
in case of a revision, the revision operator is used with the

102 using enthymemes to fill the gap between logical argumentation and revision of abstract . . .

integrity constraint >, which is equivalent to a revision
without a constraint.

We mentioned in the introduction two scenarios which re-
quire to use dynamics of argumentation techniques. First,
we suppose that agent A2 is considered to be trustworthy by
other agents. Then, when she says that c should be accepted
(which is represented by the formula accc), the other agents
have to revise their AF with this new piece of information.
The result of the revision for A1, with a corresponding com-
pletion of enthymemes which are modified because of the
revision, is given in Figure 8.

a = 〈{mnt,mnt⇒ ¬wkf},¬wkf〉 b c

Figure 8: Revision for Agent A1

Similarly, for A3, Figure 9 describes the possible revised
AFs, with the modified enthymemes corresponding to it.

a b = 〈{wkf},>〉 c

a = 〈{mnt,mnt⇒ ¬wkf},¬wkf〉 b c

Figure 9: Possible Revisions for Agent A3

Finally, the other scenario was a vote on the acceptance
status of c. Since the majority of agents rejects c, A2 has
to revise her AF by ¬accc to find an agreement with the
majority. Possible results are described in Figure 10.

a = 〈{mnt},>〉 b c

a = 〈{mnt,mnt⇒ ¬wkf,mnt⇒ ¬wkr},¬wkf ∧ ¬wkr〉

b c

Figure 10: Possible Revisions for Agent A2

Conclusion
In this paper, we argue that, in realistic situations, agents do
not share all their knowledge and beliefs. There are different
possible reasons, among them, technical and strategical
reasons seem to be the most intuitive explanations. Also,
implicit information is frequently used in natural language
argumentation (on social networks for instance). When
this situation occurs, there is some uncertainty in the
resulting argumentation frameworks built by the agents. It
is likely that agents’ opinion about arguments’ meaning and
relations between arguments will differ; there may be some
misunderstanding in the communication process which
leads to mistakes in the generation of arguments and at-
tacks. Here, this is formalized with the use of enthymemes,

instead of deductive arguments, to represent the uncertain
nature of some arguments. For this reason, the reception
of a new piece of information (supposed to be reliable)
can force the agents to question the current attack relation
to obtain a result which is compatible with the new piece
of information. We have described formally how the use
of enthymemes in the argumentation process can lead to
the existence of these mistaken attacks, and how to define
an argumentation framework which makes the distinction
between the certain attacks and the questionable attacks.
Then, we have seen that the existing works on the dynamics
of abstract AFs can be used to perform a change on an
enthymeme-based AF when it is required to incorporate
a new piece of information. Here, we exemplify it with
the translation-based revision from (Coste-Marquis et al.
2014b), but it can be adapted to any revision, update or
enforcement approach as soon as it is possible to consider
an integrity constraint on the attack relation.

This paper only presents some preliminary work on this
question. Many future works can be envisioned. First, we
want to model the uncertainty by other means than en-
thymemes. For instance, using weights could lead to the
definition of original change operators which define the no-
tion of minimal change w.r.t. these weights; it would then be
more expensive to change a single attack which has a high
weight than to change several attacks with low weights. De-
termining what can be the origin of these weights is particu-
larly interesting. Combined with the use of enthymemes, we
think that giving a low weight to an attack which is easy to
modify (because there are many possible completions of en-
thymemes in the belief base) is an interesting way to tackle
the problem. For the EAFs defined in this paper, as well as
the weighted approach mentioned above, several questions
are opened. We have made the simplifying hypothesis that
the agents will have some possible completion of arguments
at their disposal, which is not always the case in real world
situations. Similarly, the revision operators may lead to an
empty-set of results (because of the integrity constraint),
or on the opposite, to a non-singleton set of results. All
these cases must be investigated to ensure the possibility of
some practical applications. The complexity of revising such
framework, compared to the original revision approach in
the abstract setting, will also be studied to be able to identify
which approaches can be used for real applications. We also
plan to use some of the existing pieces of software for the
dynamics of AFs (in particular the one described in (Coste-
Marquis et al. 2015; Wallner, Niskanen, and Järvisalo 2015)
for extension enforcement), to study the scalability of the
approaches on practical examples. But it requires first an
important work to build argumentation graphs from logi-
cal knowledge-bases, since the existing works focus only
on argumentation trees (Efstathiou and Hunter 2008; 2011;
Besnard et al. 2010).

Acknowledgments
This work as been supported by the Austrian Science Fund
(FWF) under grants P25521 and I1102.

103

References
Alchourrón, C. E.; Gärdenfors, P.; and Makinson, D. 1985.
On the logic of theory change : Partial meet contraction and
revision functions. Journal of Symbolic Logic 50:510–530.
Amgoud, L., and Hameurlain, N. 2006. An argumentation-
based approach for dialog move selection. In Proc. of
ArgMAS 2006, 128–141.
Baumann, R., and Brewka, G. 2010. Expanding argumen-
tation frameworks: Enforcing and monotonicity results. In
Proc. of COMMA 2010, 75–86.
Baumann, R., and Brewka, G. 2015. AGM meets abstract ar-
gumentation: Expansion and revision for Dung frameworks.
In Proc. of IJCAI 2015.
Baumann, R. 2012. What does it take to enforce an argu-
ment? minimal change in abstract argumentation. In Proc.
of ECAI 2012, 127–132.
Besnard, P., and Doutre, S. 2004. Checking the acceptability
of a set of arguments. In Proc. of NMR 2004, 59–64.
Besnard, P., and Hunter, A. 2001. A logic-based theory of
deductive arguments. Artificial Intelligence 128(1-2):203–
235.
Besnard, P., and Hunter, A. 2014. Constructing argument
graphs with deductive arguments: A tutorial. Argument and
Computation 5(1):5–30.
Besnard, P.; Grégoire, E.; Piette, C.; and Raddaoui, B.
2010. MUS-based generation of arguments and counter-
arguments. In Proc. of IRI 2010, 239–244.
Bisquert, P.; Cayrol, C.; de Saint-Cyr, F. D.; and Lagasquie-
Schiex, M.-C. 2011. Change in argumentation systems: Ex-
ploring the interest of removing an argument. In Proc. of
SUM 2011, 275–288.
Bisquert, P.; Cayrol, C.; de Saint-Cyr, F. D.; and Lagasquie-
Schiex, M. 2013. Enforcement in argumentation is a kind
of update. In Proc. of SUM 2013, 30–43.
Black, E., and Hunter, A. 2012. A relevance-
theoretic framework for constructing and deconstructing en-
thymemes. Journal of Logic and Computation 22(1):55–78.
Boella, G.; Kaci, S.; and van der Torre, L. 2009a. Dynamics
in argumentation with single extensions: Abstraction prin-
ciples and the grounded extension. In Proc. of ECSQARU
2009, 107–118.
Boella, G.; Kaci, S.; and van der Torre, L. 2009b. Dynamics
in argumentation with single extensions: Attack refinement
and the grounded extension. In Proc. of AAMAS 2009, 1213–
1214.
Booth, R.; Kaci, S.; Rienstra, T.; and van der Torre, L. 2013.
A logical theory about dynamics in abstract argumentation.
In Proc. of SUM 2013. Springer. 148–161.
Cayrol, C.; de Saint-Cyr, F. D.; and Lagasquie-Schiex, M.-
C. 2010. Change in abstract argumentation frameworks:
Adding an argument. Journal of Artificial Intelligence Re-
search 38:49–84.
Coste-Marquis, S.; Konieczny, S.; Mailly, J.-G.; and Mar-
quis, P. 2014a. On the revision of argumentation systems:

Minimal change of arguments statuses. In Proc. of KR 2014,
72–81.
Coste-Marquis, S.; Konieczny, S.; Mailly, J.-G.; and Mar-
quis, P. 2014b. A translation-based approach for revision of
argumentation frameworks. In Proc. of JELIA 2014, 77–85.
Coste-Marquis, S.; Konieczny, S.; Mailly, J.-G.; and Mar-
quis, P. 2015. Extension enforcement in abstract argumen-
tation as an optimization problem. In Proc. of IJCAI 2015,
2876–2882.
Dalal, M. 1988. Investigations into a theory of knowledge
base revision: Preliminary report. In Proc. of AAAI 1988,
475–479.
Diller, M.; Haret, A.; Linsbichler, T.; Rümmele, S.; and
Woltran, S. 2015. An extension-based approach to belief
revision in abstract argumentation. In Proc. of IJCAI 2015,
2926–2932.
Doutre, S.; Herzig, A.; and Perrussel, L. 2014. A dynamic
logic framework for abstract argumentation. In Proc. of KR
2014, 62–71.
Dung, P. M. 1995. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic
programming, and n-person games. Artificial Intelligence
77(2):321–357.
Efstathiou, V., and Hunter, A. 2008. Algorithms for effective
argumentation in classical propositional logic : A connection
graph approach. In Proc. of FoIKS 2008, 272–290.
Efstathiou, V., and Hunter, A. 2011. Algorithms for generat-
ing arguments and counterarguments in propositional logic.
International Journal of Approximate Reasoning 52(6):675–
704.
Hamming, R. W. 1950. Error detecting and error correcting
codes. Bell System Technical Journal 29(2):147–160.
Hunter, A. 2007. Real arguments are approximate argu-
ments. In Proc. of AAAI’07, 66–71.
Katsuno, H., and Mendelzon, A. O. 1991. Propositional
knowledge base revision and minimal change. Artificial In-
telligence 52:263–294.
Katsuno, H., and Mendelzon, A. O. 1992. On the differ-
ence between updating a knowledge base and revising it. In
Gärdenfors, P., ed., Belief Revision. 183–203.
Leite, J., and Martins, J. 2011. Social abstract argumenta-
tion. In Proc. of IJCAI 2011, 2287–2292.
Nouioua, F., and Würbel, E. 2014. Removed set-based re-
vision of abstract argumentation frameworks. In Proc. of
ICTAI’14, 784–791.
Thimm, M., and Villata, S. 2015. First In-
ternational Competition on Computational Mod-
els of Argumentation (ICCMA’15). see http:
//argumentationcompetition.org/2015/.
Wallner, J. P.; Niskanen, A.; and Järvisalo, M. 2015. Com-
plexity results and algorithms for extension enforcement in
abstract argumentation. In Proc. of AAAI’15.

104 using enthymemes to fill the gap between logical argumentation and revision of abstract . . .

Iterated Ontology Revision by Reinterpretation

Özgür L. Özçep
Institute of Information Systems (IFIS)

University of Lübeck, Germany
oezcep@ifis.uni-luebeck.de

Abstract

Iterated applications of belief change operators are essen-
tial for different scenarios such as that of ontology evolution
where new information is not presented at once but only in
piecemeal fashion within a sequence. I discuss iterated appli-
cations of so called reinterpretation operators that trace con-
flicts between ontologies back to the ambiguous of symbols
and that provide conflict resolution strategies with bridging
axioms. The discussion centers on adaptations of the classi-
cal iteration postulates according to Darwiche and Pearl. The
main result of the paper is that reinterpretation operators ful-
fill the postulates for sequences containing only atomic trig-
gers. For complex triggers, a fulfillment is not guaranteed and
indeed there are different reasons for the different postulates
why they should not be fulfilled in the particular scenario of
ontology revision with well developed ontologies.

1 Introduction
Iterated applications of belief change operators are essen-
tial for different scenarios such as that of ontology evolution
where new information is not presented at once but only in
piecemeal fashion within a sequence. Ontology evolution is
a form of ontology change (Flouris et al. 2008) where an on-
tology modification is triggered by changes in the domain or
in the conceptualization. The response to the change is the
application of (a set of) predefined operators.

In this paper I consider the special scenario where an on-
tology (called the receiver’s ontology) has to be changed
along the arrival of a sequence of triggering bits of ontol-
ogy fragments coming from another ontology (sender’s on-
tology). In the terminology of Flouris et al. (Flouris et al.
2008) the one-step change would be termed ontology merge
as the purpose is to get a better understanding of the domain
from merging two ontologies over the same domain. As in
our setting the merge is directed I call the kind of change
operation iterated ontology revision.

One instance of iterated ontology revision is given by
iterated reinterpretation operators (Eschenbach and Özçep
2010). In these operators, conflicts between the trigger and
the receiver’s ontology is explained by ambiguous use of
terms. Consider an example of two online library systems

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

with ontologies: the sender may use Article to denote pub-
lications in journals whereas the receiver may useArticle to
denote publications in journals or proceeding volumes. As
the ontologies are assumed to be over the same domain, the
receiver guesses relations on relations between her and the
sender’s uses and stipulates them as bridging axioms, e.g.,
stating that all articles in the sender’s sense are articles in
the receiver’s sense.

Now, a challenging aspect is to define adequateness cri-
teria that iterated ontology revision operators should fulfill.
I consider the classical iteration postulates of Darwiche and
Pearl (Darwiche and Pearl 1994) as possible candidates and
state whether they are fulfilled by the reinterpretation opera-
tors. Moreover I discuss, for each of them, whether it should
be fulfilled at all. The main result of the paper is that rein-
terpretation operators fulfill the postulates sequences with
atomic triggers. For sequences of complex triggers, a ful-
fillment is not guaranteed and indeed there are different
reasons—corresponding to different postulates—why they
should not be fulfilled in the particular scenario of ontology
revision with well developed ontologies.

The rest of the paper is structured as follows. After some
logical preliminaries and general terminology (Sect. 2) the
necessary definitions for reinterpretation operators are reca-
pitulated (Sect. 3). Before the sections on related work and
the conclusion, the adapted postulates for iterated revision,
results on their fulfillment by reinterpretation operators, and
a discussion of the results are given in Sect. 4.

2 Terminology and Logical Preliminaries
The reinterpretation framework described in the following
works for any FOL theory but we consider here finite knowl-
edge bases formulated in description logics.

A non-logical DL vocabulary consists of concept symbols
(= atomic concepts) NC , role symbols NR, and individual
constants Ni. Using these, more complex concept descrip-
tions can be built up in a recursive fashion. The set of pos-
sible concept constructors depends on the specific DL. We
consider in particular the basic constructors u,t,¬,∃. C(V)
is the set of all possible concept descriptions that can be built
from the symbols in V in the given description logic.

The semantics is the usual Tarskian semantics based on
interpretations I = (∆I , ·I) with a domain ∆I and de-
notation function ·I which gives for every c ∈ Ni an ele-

105

ment cI ∈ ∆I , for every atomic concept A ∈ NC a set
AI ⊆ ∆I and for every role symbol R ∈ NR a binary re-
lation RI ⊆ ∆I ×∆I . The denotation function is extended
recursively to all concept descriptions in the usual manner.
For the ones we use here, we have (C uD)I = CI ∩DI ;
(CtD)I = CI∪DI ; (¬C)I = ∆I\CI ; (∃R.C)I = {x ∈
∆I | There is y ∈ CI s.t. (x, y) ∈ RI}. Here C,D ∈ C(V)
and R ∈ NR. From concept descriptions one can built ax-
ioms which can be evaluated as true in (satisfied by) or false
in (satisfied by) an interpretation. We consider TBox (termi-
nological Box) axioms of the form
• C v D (concept subsumption) for C,D ∈ C(V) with

semantics: I |= C v D iff CI ⊆ DI ;
• R1 v R2 (role subsumption) for R1, R2 ∈ NR with se-

mantics I |= R1 v R2 iff (R1)I ⊆ (R2)I

Moreover, we consider ABox axioms (assertional axioms)
of the form C(a) and R(a, b) for C ∈ C(V), a, b ∈ Ni and
R ∈ NR. The semantics is I |= C(a) iff aI ∈ CI and
I |= R(a, b) iff (a, b) ∈ RI . We call ABox axioms of the
form A(a) and ¬A(a) with A ∈ Ni concept assertions or
concept-based literals. Â stands for A or ¬A. Additionally,
equalities a .

= b, a, b ∈ Ni may be allowed.
Consistency (= satisfiability) of a set of axioms X means

that there is an interpretation I making all axioms inX true,
for short I |= X . Entailment is defined as usual byO1 |= O2

iff for all I: If I |= O1, then I |= O2. A consequence op-
erator Cn gives the set of all axioms following from a set:
Cn(X) = {ax | X |= ax}. If necessary, one can spec-
ify the vocabulary of the axioms: CnV(X) is the set of ax-
ioms over V following from X . X ≡V Y is shorthand for
CnV(X) = CnV(Y). By V(O) we denote all non-logical
symbols occurring in the set of axiomsO. C(O) = C(V(O)).

The ontology notion of this paper slightly extends the one
known from the semantic web and DL community—the ex-
tension relying on the distinction between an internal vocab-
ulary V ′ and a public vocabulary V:
Definition 1 An ontologyO is a tripleO = (O,V,V ′) con-
sisting of a set of axioms O over a logic with non-logical
symbols V (the public vocabulary) and V ′ (the internal vo-
cabulary).
In the following I will abuse terminology by calling also the
set of axioms O ontology.

Let O1

`

O2 be the dual remainder sets modulo O2 (Del-
grande 2008). This is the set of inclusion maximal subsets
X of O1 that are consistent with O2, i.e., X ∈ O1

`

O2 iff
X ⊆ O1, X ∪ O2 is consistent and for all Y ⊆ O1 with
X (Y the set Y ∪O2 is not consistent.

We are going to deal with substitutions as means to real-
ize name space dissociations. The set of ambiguity compli-
ant resolution substitutions, denoted AR(V,V ′), consists of
substitutions of symbols in V by symbols in V∪V ′. Here, we
assume V ∩ V ′ = ∅ where V ′ is the set of symbols used for
internalization. The substitutions in AR(V,V ′) get as input
a non-logical symbol in V (a constant, an atomic concept or
role in DL speak) and map it either to itself or to a new non-
logical symbol (of the same type) in V ′. The set of symbols
s ∈ V for which σ(s) 6= s is called the support of σ and

is denoted sp(σ). In the following I use postfix notation for
substitutions, i.e., Xσ = σ(X). Moreover, I use the follow-
ing shorthands spi(σ) = sp(σ)∩Ni and spCR(σ) = sp(σ)∩
(NC ∪ NR). A substitution with support S is also denoted
by σS . For substitutions σ1, σ2 ∈ AR(V,V ′) we define an
ordering by: σ1 ≤ σ2 iff sp(σ1) ⊆ sp(σ2). AR(V,V ′) can
be partitioned into equivalence classes of substitutions that
have the same support. We assume that for every equivalence
class a representative substitution Φ(S) ∈ AR(V,V ′) with
support S is fixed. Φ is called a disambiguation schema.

3 Reinterpretation Operators
This section recapitulates the definitions of ontology revi-
sion operators called reinterpretation operators (Eschenbach
and Özçep 2010; Özçep 2008). The envisioned scenario is
that of two agents holding well-developed ontologies, one
called receiver’s ontology, the other called sender’s ontol-
ogy. The ontologies are over the same domain and the re-
ceiver gets bits of information from the sender’s ontology
that she wants to integrate into her ontology in order to get a
better, more fine-grained model of the domain. A challeng-
ing aspect is to preserve the consistency of the ontology. The
kind of inconsistency that is considered here is that of inter-
ontological ambiguity: the sender and the receiver may use
the same symbol with different meanings (compare for ex-
ample the different uses of Article in the example below).

So, the conflict resolution strategy that is exploited by the
reinterpretation operators is based on disambiguating sym-
bols. The sender or the receiver has to reinterpret an ambigu-
ous symbol. In the more interesting non-monotonic setting,
that I consider in this paper, it is always the receiver who
reinterprets the ambiguous symbol—by storing the old sym-
bol in a new name space and relating her use of the sym-
bols to the sender’s use by bridging axioms. This is in line
with classical (prioritized) belief revision where one has full
trust in the trigger information. In (Eschenbach and Özçep
2010) these reinterpretation operators are called type-2 op-
erators, contrasting them with type-1 operators in which it is
the sender’s terminology that is reinterpreted.

The weak reinterpretation operators ⊗ and strong rein-
terpretation operators � are binary operators with a finite
set of ontology axioms ontology as left and right argument.
The following example (Özçep 2012) demonstrates the main
ideas for the weak reinterpretation operators.
Example 1 Consider the sets of ontology axioms O1, O2 of
the receiver and sender, resp.:

O1 = {Article(pr1), Article(pr2),¬Article(bo1)}
O2 = {¬Article(pr1)}

Applying the weak reinterpretation operator⊗ gives the fol-
lowing set of axioms:

O1 ⊗ O2 = {Article′(pr1), Article′(pr2),

¬Article′(bo1),¬Article(pr1),

Article v Article′}
For the purpose of the example I assume that only concept
and role symbols but not constant symbols may be used am-
biguously. So, the above conflict between the sender’s and

106 iterated ontology revision by reinterpretation

receiver’s ontology can only be caused by different uses of
the atomic concept Article. The receiver (holder of O1)
gives priority to the sender’s use of Article over her use
of Article, and hence she adds ¬Article(pr1) into the re-
sult O1 ⊗ O2. The receiver’s use of Article is internalized,
i.e., all occurrences of Article in O1 are substituted by a
new symbol Article′. This step of internalization will also
be called the step of dissociation or disambiguation. Addi-
tionally, the receiver adds hypotheses on the semantical re-
latedness (bridging axioms) of her and the sender’s use of
Article, here Article v Article′ which states that Article
is a subconcept of Article′.
Technically, the disambiguation is realized by uniform sub-
stitutions from AR(V,V ′) (see section on logical prelimi-
naries). For the disambiguation, one has to deal with the a
potential multiplicity of conflicts. The minimal conflict sym-
bol sets defined below describe the smallest sets of symbols
which have to be disambiguated in order to resolve conflicts.

Definition 2 For ontologies O1, O2 over V the set of min-
imal conflicting symbols sets, MCS(O1, O2), is defined as
follows:

MCS(O1, O2) =
{ S ⊆ V | There is a σS ∈ AR(V,V ′), s.t.

O1σS ∪O2 is consistent, and for
all σS1 ∈ AR(V,V ′) with σS1 < σS
O1σS1 ∪O2 is not consistent. }

Following the strategy of AGM partial meet revision
(Alchourrón, Gärdenfors, and Makinson 1985), we as-
sume that a selection function γ1 selects candidates
from MCS(O1, O2) to be used for the resolution:
γ1(MCS(O1, O2)) ⊆ MCS(O1, O2). So the symbol set de-
fined by S# =

⋃
γ1(MCS(O1, O2)) is the set of symbols

which will be internalized.
To regain as much as possible from the receiver’s ontol-

ogy in the ontology revision result, the disambiguated sym-
bols of S# are related by bridging axioms. Depending on
what kind of bridging axioms are chosen, different revision
operators result. In this paper we consider two classes of
bridging axioms, the simple bridging axioms and the strong
bridging axioms (Özçep 2008). Let σ = σS ∈ AR(V,V ′)
be a substitution with support S ⊆ V . Let P be a concept or
role symbol in S, σ(P) = P ′.
Definition 3 Let σ = σS ∈ AR(V,V ′) for S ⊆ V ∩ (NC ∪
NR). The set of simple bridging axioms w.r.t. σ is

B(σ) = {P v P ′, P ′ v P | P ∈ S}
The set of strong bridging axioms w.r.t. σ is defined as:

Ḃ(σ,O) =
{Cσ v s | C ∈ C(O), s ∈ spCR(σ), O |= C v s}∪
{s v Cσ | C ∈ C(O), s ∈ spCR(σ), O |= s v C}∪
{s .

= sσ | s ∈ spi(σ)}

In case of conflict, not all bridging axioms of B(S#)

(resp. Ḃ(S#)) can be added to the integration result (com-
pare Ex. 1). Hence, one searches for subsets that are compat-
ible with the union of the internalized ontology and sender

ontology, O1σ ∪ O2. That means, possible candidate sets
of bridging axioms can be described by dual remainder sets
(see section on logical preliminaries) as B(σ)

`
(O1σ ∪O2).

Again, as there is no preference for one candidate over the
other we assume that a second selection function γ2 is given
with γ2(B(σ)

`

(O1σ ∪ O2)) ⊆ (B(σ)

`

(O1σ ∪ O2). The
intersections of the selected bridging axioms is the set of
bridging axioms added to the integration result. (Compare
this with the partial meet revision functions of AGM (Al-
chourrón, Gärdenfors, and Makinson 1985)).

Definition 4 Let V,V ′ be disjoint vocabularies and Φ a dis-
ambiguation scheme. Moreover let γ1, γ2 be selection func-
tions and for short let γ = (γ1, γ2). For any ontologyO1 and
O2 over V let S# =

⋃
γ1(MCS(O1, O2)) and σ = Φ(S#).

Then the weak reinterpretation operator ⊗γ and the strong
reinterpretation operator �γ are defined as follows:

O1 ⊗γ O2 = O1σ ∪O2 ∪
⋂
γ2
(
B(σ)

`

(O1σ ∪O2)
)

O1 �γ O2 = O1σ ∪O2 ∪⋂
γ2
(
Ḃ(σ,O1)

`

(O1σ ∪O2)
)

The definition for weak reinterpretation operators is the
same as in (Özçep 2008), the definition of the strong op-
erators is an extension.

In the following I will simplify the discussion by simpli-
fying the first step of internalization: In the internalization
step now all symbols of the receiver are internalized. There
is only a selection function for bridging axioms. Due to the
fact that the maximal candidates of bridging axioms are used
in the reinterpretation operators unnecessary internalizations
do not occur. I therefore can write in the following, e.g., ⊗γ
instead of ⊗γ .

A particularly interesting case of ontology change ap-
pears in the context of ABox update (Ahmeti, Calvanese,
and Polleres 2014; Gutierrez, Hurtado, and Vaisman 2011),
where the trigger informations are assertional axioms
(ABox) axioms. I consider the special case that only atomic
bits from the sender ontology occur as trigger, namely, the
trigger O2 is of the form O2 = {A(a)} or of the form
O2 = {¬A(a)}. That is, the trigger is a concept assertion
with an atomic symbol (A ∈ NC) or the negated atomic
symbols ¬A. For this special case particular strong reinter-
pretation operators can be defined (Eschenbach and Özçep
2010). The first class assumes that within the underlying DL
a most specific concept w.r.t. an ontology exists. C is a most
specific concept for b in the ontology O iff O |= C(b) and
for all C ′ s.t. O |= C ′(b) also O |= C v C ′. The most spe-
cific concept is unique modulo concept equivalence (w.r.t.
O), hence it is denoted by mscO(b).

Definition 5 Let O = (O,V,V ′) be an ontology, Φ a dis-
ambiguation scheme, A ∈ V ∩NC and b ∈ V ∩Ni. Assume
σ = [A/A′] is the substitution fixed by Φ and assume that
mscO(b) exists. The msc-based strong reinterpretation oper-
ators for concept-based literals �) are defined as follows:
If O ∪ {A(b)} 6|= ⊥ let O � A(b) = O ∪ {A(b)}. Else:

O � A(b) =
σ(O) ∪ {A(b), A′ v A,A v A′ tmscOσ(b)}

107

If O∪{¬A(b)} 6|= ⊥, let O�¬A(b) = O∪{¬A(b)}. Else:

O � ¬A(b) =
σ(O) ∪ {¬A(b), A v A′, A′ v A tmscOσ(b)}

The following examples illustrates the second case.
Example 2 Assume that the receiver’s ontology from the
beginning is extended with two additional facts on the
“problematic” entity pr1:

O+
1 = O1 ∪ {publishedIn(pr1, proc1), P roceed(proc1)}

The most specific concept of pr1 w.r.t. O+
1 is

mscO+
1

(pr1) = Article u ∃publishedIn.Proceed

Hence the result of strong reinterpretation w.r.t. triggering
concept assertions O+

1 � ¬Article(pr1) adds the following
additional bridging axiom

Article′ v Articlet (Article′ u∃publishedIn.Proceed)

This says that the wider use of Article by the receiver adds
(only) those publications in proceedings into the extension.

The selection-based strong operators for triggering literals
provide more bridging axioms between the internalized and
non-internalized symbols.

Definition 6 Let O = (O,V,V ′) be an ontology, Φ a dis-
ambiguation scheme, A ∈ V ∩NC and b ∈ V ∩Ni. Assume
σ = [A/A′] is the substitution fixed by Φ and that mscO(b)
exists. Moreover, let sel be an arbitrary selection function,
defined as sel(X) ⊆ X . The selection-based strong reinter-
pretation operators for concept-based literals ⊕sel) are de-
fined as follows (using auxiliary definitions for the specific
bridging axioms):

oa(O,A(b),K ′) = {A v A′ t C | C ∈ C(V ∪ V ′),
Oσ |= C(b) and A /∈ V(C)}

oa(O,¬A(b), A′) = {A′ v A t C | C ∈ C(V ∪ V ′),
Oσ |= C(b) and A /∈ V(C)}

O ⊕sel α =

{
O ∪ {α} if O ∪ {α} 6|= ⊥
O ⊗ {α} ∪ sel(oa(O,α,A′))

else

Though the complexity of the trigger is low the induced
concept lattice for the reinterpretation with ⊕sel is not triv-
ial as illustrated by Fig. 1. Nonetheless, the figure does not
suggest that the computation of the revision outcome is more
complex than for other revision operators for DL ontologies:
It just illustrates the subsumption connections of the con-
cepts within the resulting ontology; the calculation of the
lattice is not part of constructing the revision result.

Without proof I state here some observations on the con-
servativity of reinterpretation operators. Proofs can be found
in (Eschenbach and Özçep 2010).
Proposition 1 Let O = (O,V,V ′) be an ontology, Φ a dis-
ambiguation scheme, A ∈ V ∩ NC and a, c ∈ V ∩ Ni.
Assume σ = [A/A′] is the substitution fixed by Φ and that
mscO(a) exists. Let α = A(a) ε = A(c) or α = ¬A(a)
and ε = ¬A(c). Let β be an assertion with V(β) ⊆ (V ∪

V(O))\{A}. Let sel be a selection function for bridging ax-
ioms and s̃el a corresponding function selecting correspond-
ing concepts: s̃el(oa(O, Â(a), A′)) = {C | Â v Â′ t C ∈
sel(oa(O, Â(a), A′))}.

If O |= ¬α, then
1. O ◦ α |= β iff O |= β
2. O ◦ α |= ε iff O ∪ {a 6 .= c} |= ε
3. O ⊗ α 6|= ¬ε
4. O � α |= ¬ε iff O |= ¬ε and

O |= ¬mscO(a)(c)
5. O ⊕sel α |= ¬ε iff O |= ¬ε and

O |= ¬ u s̃el(oa2(O,α,A′))[A′/A](c)

4 Postulates for Iterated Reinterpretation
Many forms of ontology change (Flouris et al. 2008), in par-
ticular ontology evolution (Kharlamov, Zheleznyakov, and
Calvanese 2013), require the iterated application of a change
operator under new bits of informations. In iterated belief re-
vision, this problem is approached systematically by defin-
ing, both, postulates and operators for iterated applications
of revision operators. The first systematic study of iterated
belief revision goes back to the work of Darwiche and Pearl
(Darwiche and Pearl 1994) who stressed the fact that the
AGM postulates (Alchourrón, Gärdenfors, and Makinson
1985) are silent w.r.t. the iterated application of operators.
Indeed, the only postulates that can be said to touch some
form of iteration are those dealing with the revision of con-
junctions of triggers (supplementary postulates 7 and 8).

I state those postulates in a form adapted to ontologies.

(RAGM 7) CnV(O ◦ (O1 ∪O2)) ⊆ CnV((O ◦O1) ∪O2)

Postulate (RAGM 7) says that all sentences over V fol-
lowing from O ◦ (O1 ∪O2) are contained in the revision by
O1 followed by an expansion with O2.

(RAGM 8) If (O ◦O1) ∪O2 6|= ⊥, then :

CnV((O ◦O1) ∪O2) ⊆ CnV(O ◦ (O1 ∪O2))

Postulate (RAGM 8) says that all sentences over V fol-
lowing from the result of revising with O1 and expanding
with O2 also follow from revising O with the union of O1

and O2. A precondition is that the revision result by O1 is
compatible with O2.

In general, the reinterpretation operators do not fulfill
these postulates. This can be shown with examples similar
those provided by Delgrande and Schaub (Delgrande and
Schaub 2003, p. 13).

But if one chooses particular selection functions for the
reinterpretation operators on triggering ontologies, then one
can show that the postulates (RAGM 7) and (RAGM 8)
are fulfilled. This result is similar to an AGM theorem (Al-
chourrón, Gärdenfors, and Makinson 1985) which says that
a partial meet revision operator on belief sets fulfills all
AGM postulates (in particular the supplementary ones) iff
it can be defined as a transitive relational partial meet revi-
sion operator.

108 iterated ontology revision by reinterpretation

⊤

A′|C A′|C A|A′
A|C A|C

A′ A|A′
C C|AA′ A|A′

C (A|C)(A′|C) A
′
C|A′C C (A′|CA) (A′|CA) A

A A′(C|A) A′C C AC|A′
C AC|A′

C A
′(A|C) C(A|A′) AC A

′

AC AC AA
′

A
′
C A

′
C

⊥b

Figure 1: Concept lattice for O ⊕sel A(b) for the case O |= ¬A(b). We assume that the set of concepts chosen by sel is
representable as a concept description C. Here, A1 uA2 is abbreviated as A1A2, ¬A by A and A1 tA2 by A1|A2

Definition 7 A selection function γ for bridging axioms is
called a maximum based selection function for bridging ax-
ioms iff the following holds:

1. |γ(X)| = 1 for all ∅ 6= X ⊆ B(σV).
2. If BA1 and BA2 are non-empty sets of bridging axioms

from B(σV), i.e., BA1, BA2 ∈ Pow(B(σV))\{∅} s.t. for
allX2 ∈ BA2 there is aX1 ∈ BA1 withX2 ⊆ X1, and if
additionally also γ(BA1) ⊆ BA2 holds, then γ(BA2) =
γ(BA1).

Now one can show

Proposition 2 Let O = (O,V,V ′), O1 = (O1,V, ∅) and
O2 = (O2,V, ∅) be ontologies and γ be a maximum based
selection function for bridging axioms. Then:
If (O ⊗γ O1) ∪ O2 is consistent, then : O ⊗γ (O1 ∪ O2) =
(O ⊗γ O1) ∪O2.

This proposition shows that weak reinterpretation opera-
tors with maximum based selection function fulfill (RAGM
8). Moreover, one sees immediately that they fulfill the pos-
tulate (RAGM 7) because if (O⊗γ O1)∪O2 is inconsistent,
then trivially:

CnV(O ⊗γ (O1 ∪O2)) ⊆ CnV((O ⊗γ O1) ∪O2)

The supplementary postulates do not give constraints for
the interesting case where for both triggers genuine revi-
sions have to be applied. This motivated Darwiche and Pearl
(Darwiche and Pearl 1994) to define four iteration postulates
which, in an adaptation for the ontology revision scenario,
are investigated in the following. The results below show
that the reinterpretation operators in general do not fulfill
the postulates.

The postulates are, along the original ideas of Darwiche
and Pearl (Darwiche and Pearl 1994), described for finite
sets of sentences (here: ontology axioms), and not for epis-
temic states as in their follow-up paper (Darwiche and Pearl
1997). Using the terminology of Freund and Lehmann (Fre-
und and Lehmann 2002), the type of iterated revision I con-
sider in this paper is static: There is no (used) encoding of
the revision history in an epistemic state nor do I consider
the dynamic change of revision operators from step to step.
As we consider the justification of the iteration postulates
not as a whole but one by one this approach does not stand
in contradiction to the insights made in the follow-up paper
by Darwiche and Pearl (Darwiche and Pearl 1997).

In the following postulates, O = (O,V,V ′) is the ini-
tial ontology, O1 = (O1,V, ∅) the first triggering ontology
and O2 = (O2,V, ∅) the second triggering ontology. Note
that the trigger ontologies do not contain internal symbols—
which fits the idea that only the public parts of the sender
ontologies are communicated.

(RDP 1) If O2 |= O1, then (O ◦O1) ◦O2 ≡V O ◦O2.

In natural language: If the axioms of the second trigger
ontology are stronger than the ones of the first trigger on-
tology, then the two-step outcome (relativized to the public
vocabulary) is already covered by the revision with the sec-
ond trigger ontology.

(RDP 2) If O1 ∪O2 is not consistent,
then (O ◦O1) ◦O2 ≡V O ◦O2.

In natural language: If the axioms of the first and second trig-
ger ontology are incompatible, then the two-step outcome

109

(relativized to the public vocabulary) is already covered by
the revision with the second trigger ontology.

(RDP 3) If O ◦O2 |= O1, then (O ◦O1) ◦O2 |= O1.

In natural language: If the revision by the second trigger on-
tology entails the first trigger ontology, then the entailment
still holds for the revision with the first ontology followed
by the second trigger ontology.

(RDP 4) If O1 ∪ (O ◦O2) is consistent
then so is O1 ∪ (O ◦O1) ◦O2.

In natural language: If the revision by the second trigger on-
tology is compatible with the first trigger ontology, then the
compatibility still holds for the revision with the first fol-
lowed by the second trigger ontology.

As the following Proposition 3 shows, the fulfillment of
all adapted iteration postulates cannot be guaranteed if the
trigger is an ontology. (This is the same as for the operators
of Delgrande and Schaub (Delgrande and Schaub 2003).) If
the trigger is of atomic nature the situation is different due
to the fact that there is only one symbol to be reinterpreted.
For triggering literals only (RDP 2) is not fulfilled.

Proposition 3 states results for all reinterpretation oper-
ators mentioned in this paper: Regarding the weak opera-
tors a distinction is made between triggering literals and on-
tologies. Table 1 summarizes the results. The rows contain
the operators: The first three having concept-based literals
as triggers, the last two ontologies. The columns except for
the last one refer to the iteration postulates. The last col-
umn gives a reference to the corresponding result in Proposi-
tion 3. Regarding the counterexamples I draw the following
distinction—also reflected in the table: The weak counterex-
amples are those that construct ontologies for a specific se-
lection function. The strong counterexamples are those that
construct ontologies for any selection function.

In the counter examples that were used to prove the neg-
ative results all reinterpretation operators reinterpret only
atomic concepts and roles but not constants. As long as a
conflict resolution by reinterpreting only concepts and roles
is possible, the reinterpretation operators can be modeled by
a suitable definition of a selection function γCR: γCR selects
only sets of bridge axioms that contain all identities for all
constants which, in the end, means that the constants are not
reinterpreted. In this case I call γCR a selection function that
prefers the reinterpretation of role and concept symbols.

Proposition 3 Regarding the fulfillment of the adapted iter-
ation postulates of Darwiche and Pearl (Darwiche and Pearl
1997) the following results hold.

1. Reinterpretation operators for concept-based triggers
(⊗,�,⊕sel) fulfill (RDP 1), (RDP 3) and (RDP 4).
There are ontologies O,O1,O2 such that ⊗,� and ⊕sel

(for all selection functions sel) do not fulfill (RDP 2).
There are ontologies O,O1,O2 and a selection function
sel such that ⊕sel does not fulfill (RDP 3) and does not
fulfill (RDP 4).

2. For weak reinterpretation operators over triggering on-
tologies ⊗γ the following holds:

For all postulates (RDP x), 1 ≤ x ≤ 3, there are ontolo-
gies O,O1,O2 such that for all selection functions γCR

that prefer the reinterpretation of role and concept sym-
bols ⊗γ does not fulfill (RDP x).
There are ontologies O,O1,O2 and a selection function
γCR that prefer the reinterpretation of role and concept
symbols such that ⊗γ does not fulfill (RDP 4).

3. For strong reinterpretation operators over triggering on-
tologies �γ the following holds:
For all postulates (RDP 1), (RDP 3), (RDP 4) there are
ontologies O,O1,O2 and selection functions γ such that
�γ does not fulfill any of them.
There are ontologiesO,O1,O2 such that for all selection
functions γCR that prefer the reinterpretation of concepts
and role symbols �γ does not fulfill (RDP 2).

I discuss the outcomes of the proposition for the four
postulates one by one starting with (RDP 2) which (in its
original form given by Darwiche and Pearl) evoked most
of the criticism. Regarding this postulate I follow the ar-
gument of Delgrande and Schaub (Delgrande and Schaub
2003) according to which (RDP 2) may make sense only for
non-complex triggers. For complex triggers, say in our case:
complex ontologiesO1 (andO2), does not work. AssumeO1

is made out of two sub-ontologiesO11 undO12 s.t. onlyO12

is not compatible with O2. All those assertions that follow
from O ◦ O1 on the basis of O11 should be conserved af-
ter the revision with O2. But according to (RDP 2) amnesic
revision would be allowed if O2 would not entail O11: All
sentences inferred with O11 would be eliminated in favor of
the new ontology O2.

Regarding the first iteration postulate, the following sim-
ple example by Delgrande and Schaub (Delgrande and
Schaub 2003) demonstrates its questionable status. Actu-
ally, for the proof of Proposition 3.2 I use adapted variants
of this example. Consider the ontologies O = {¬A(a)},
O1 = {(A t B)(a)} und O2 = {A(a)} |= O1. Let γ be a
selection function that prefers the reinterpretation of concept
and role symbols. The second ontology O2 ist stronger than
the first ontology O1. Revision with O2 leads to an ontology
in which B(a) does not hold: O ⊗γ O2 6|= B(a). The re-
vision with the first ontology leads to an ontology in which
B(a) holds:O⊗γO1 = {¬A(a), (AtB)(a)} |= B(a). The
revision by the first and then by the second ontology gives
an ontology that still entails B(a):

(O ⊗γ O1)⊗γ O2 = {¬A(a), (A tB)(a), A′(a′),

A v A′, a .
= a′, B v B′,

B′ v B} |= B(a)

All preconditions in the antecedent of (RDP 1) are fulfilled
but not the succedens: (O ⊗γ O1)⊗γ O2 6≡V O ⊗γ O2.

There is no plausible revision operator for this particular
ontology setting that would fulfill (RDP 1). Such an operator
would have to fulfill O ◦O1 |= B(a) as O and O1 are com-
patible. The revision with O2 should not eliminate B(a) as
B(a) is not relevant for the conflict: (O ◦O1) ◦O2 |= B(a).
Clearly, one could define syntax-sensitive revision operators
on belief bases s.t. (O ◦ O1) ◦ O2 6|= B(a) so that the ful-
fillment of (RDP 1) could be achieved also for this ontol-

110 iterated ontology revision by reinterpretation

Operator (RDP 1) (RDP 2) (RDP 3) (RDP 4) Proposition
3.x

⊗ + – + + 1
⊕sel + – (∀ sel) + +
� + – + +
⊗γ – (∀γCR) – (∀γCR) – (∀γCR) – (∃γCR) 2
�γ – (∃γCR) – (∀γCR) – (∃γCR) – (∃γCR) 3

Table 1: Results of Proposition 3
A + entry means that the postulate is fulfilled for all ontologies. A – entry means that there is an ontology such that the postulate
is not fulfilled (only used for triggering literals). An entry of type – (∀ sel) resp. – (∀γ) resp. – (∀γCR) means that there are
ontologies s.t. for all selection functions sel resp. γ resp. γCR the postulate is not fulfilled. An entry of type – (∃γCR) means,
that there is a selection function γCR such that the postulate is not fulfilled.

ogy configuration. But this does not change the situation that
also (O ◦ O1) ◦ O2 |= B(a) should be fulfilled. Moreover,
syntax-sensitive belief-base operators are not appropriate for
the revision of ontologies for which we would like to en-
sure (unique) syntax insensitive representations. So the only
possibility for ◦ to fulfill (RDP 1) is that O ◦ O2 |= B(a)
holds. Such an operator ◦ that fulfills these conditions can
be defined : O entails (¬A t B)(a) and (¬A t ¬B)(a).
If ◦ has a selection function γ that chooses (¬A t B)(a),
then O ◦O2 would entail B(a). But one could equally have
a selection function γ′ such that O ◦ O2 6|= B(a) or even
O ◦O2 |= ¬B(a). There is no adequate reason for assuming
that one has to prefer γ over γ′.

The counter example against (RDP 1) refers to triggering
ontologies. For non-complex triggers such as concept-based
literals a counter example cannot be constructed. Indeed: In
this case all reinterpretation operators fulfill (RDP 1) (be-
sides (RDP 3) and (RDP 4) (see Proposition 3.1).

Regarding the weak reinterpretation operator for trigger-
ing ontologies ⊗γ one can construct examples such that for
all selection functions γ that prefer the reinterpretation of
concept and role symbols ⊗γ does not fulfill the postulate
(RDP 3) (Proposition 3.2). For strong reinterpretation op-
erators for triggering ontologies one can at least construct
ontologies and at least one selection function showing the
non-fulfillment (RDP 3). The counter example for the weak
variants is based on the interplay of trivial revision (consis-
tency case) and non-trivial revision (inconsistency case):

O = {A(a),¬B(a) ∨ ¬A(c), A(b) ∨ ¬A(e)}
O1 = {¬A(b)}
O2 = {¬A(a), B(a), A(c) ∨ ¬A(b), A(e)}

O and O1 are chosen such that they are compatible and so
O ⊗γ O1 = O ∪ O1 |= ¬A(e). Due to the antecedens in
postulate (RDP 3) the revision by the second triggering on-
tology O2 gives an ontology O ⊗γ O2 that entails the first
triggerO1. The conflict resolution forO2∪O is such thatO1

is not effected by it. But a previous revision withO1 requires
a different (additional) conflict resolution with O2 such that
O1 is not entailed anymore: (O⊗γO1)⊗γO2 6|= {¬A(b)}(=
O1). The reason that ¬A(b) cannot be inferred anymore is
due to the fact that the conflict resolution for O ⊗γ O1 and
O2 leads to a reinterpretation of A, and due to the fact that

the assertion ¬A(e), which follows from O ⊗γ O1, has the
same polarity as ¬A(b): namely, it is also negated.

This lost of ¬A(b) is due to the construction of the reinter-
pretation operators which implement a uniform reinterpreta-
tion: In case of conflicts all occurrences of symbols involved
in the conflict are internalized. Only by introducing bridging
axioms is it possible to regain assertions in the public vo-
cabulary. But when the bridging axioms are not expressive
enough, then old sentences of the receiver (such as ¬A(b) in
this example) may not be entailed anymore. This last discus-
sion regarding (RDP 3) (and similarly for (RDP 4)) cannot
be used as general arguments against (RDP 3) and (RDP 4)
as adequate reinterpretation postulates. One may construct
plausible ontology revision operators fulfilling (RDP 3) and
(RDP 4), but these cannot implement uniform reinterpre-
tation: They would have to do partial reinterpretation (as,
e.g., done by Goeb and colleagues (Goeb et al. 2007)). So,
acceptable arguments against (RDP 3) and (RDP 4) would
have to support the requirement of uniformity within reinter-
pretation. And indeed, there are good arguments in form of
novel postulates that are motivated by typical requirements
in ontology change settings: One wants to preserve the on-
tologies somehow in the ontology revision result and also
wants them to be reconstructible. In particular these require-
ments occur when the ontologies are well-developed.

I describe these postulates for the iterated scenario with a
sequence SEQ of triggering ontologies. Let O = (O,V,V ′)
be an ontology and let SEQ be a finite sequence of ontology
axioms containing only symbols in the public vocabulary V .

An operator ◦ that fulfills the iterated preservation pos-
tulate for the left argument (Preservation) has to guarantee
that there is a substitution σ s.t. the initial ontology O is
preserved in internalized form Oσ in the result of iterated
revision with a sequence SEQ.

(Preservation) There is a substitution σ s.t.:

Oσ ⊆ O ◦ SEQ

An operator ◦ that fulfills (Reconstruction) has to guaran-
tee the existence of a substitution ρ such that the initial on-
tology O and the set set(SEQ) of all triggering ontologies
in the sequence SEQ are contained in a renamed variant of
the revision result (O ◦ SEQ)ρ.

111

(Reconstruction) There is a substitution ρ s.t.:

O ∪ set(SEQ) ⊆ (O ◦ SEQ)ρ

All reinterpretation operators of this paper fulfill both pos-
tulates. I state this proposition the proof of which is a slight
adaptation of the proof given in (Eschenbach and Özçep
2010) for triggering concept-based literals.

Proposition 4 LetO = (O,V,V ′) be an ontology and SEQ
be finite sequence of setts of ontology axioms over V and ◦
a reinterpretation operator for triggering ontologies. Then
there exists σ and ρ, such that :

1. Oσ ⊆ O ◦ SEQ

2. O ∪ set(SEQ) ⊆ (O ◦ SEQ)ρ

3. For all symbols C ∈ V(O) ∪ V one has: C = Cρ.

5 Related Work
The reinterpretation operators are constructed in a similar
fashion as those by Delgrande and Schaub (Delgrande and
Schaub 2003) but differ in that they are defined not only for
propositional logic but also for DLs (and FOLs). Moreover,
I consider different stronger forms of bridging axioms than
the implications of (Delgrande and Schaub 2003).

Bridging axioms are special mappings that are used in
the reinterpretation operator as auxiliary means to imple-
ment ontology revision. One may also consider mappings by
themselves as the objects of revision (Qi, Ji, and Haase 2009;
Meilicke and Stuckenschmidt 2009). A particularly interest-
ing case of mapping revision comes into play with mappings
used in the ontology based data access paradigm (Calvanese
et al. 2009). These mappings are meant to lift data from re-
lational DBs to the ontology level thereby mapping between
close world of data and the open world of ontologies. In
this setting different forms of inconsistencies induced by the
mappings can be defined (such as local vs. global inconsis-
tency) and based on this mapping evolution ensuring (one
form of consistency) be investigated (Lembo et al. 2015).

In this paper I used reinterpretation operators as change
operators on ontologies described in DLs. There are differ-
ent other approaches that use the ideas of belief revision for
different forms of ontology change such as ontology evo-
lution over DL-Lite ontologies (Kharlamov, Zheleznyakov,
and Calvanese 2013) or ontology debugging (Ribeiro and
Wassermann 2009). As the consequence operator over DLs
do not fulfill all preconditions assumed by AGM (Al-
chourrón, Gärdenfors, and Makinson 1985) one cannot di-
rectly transfer AGM constructions and ideas one-to-one to
the DL setting as noted, e.g., by Flouris and colleagues
(Flouris, Plexousakis, and Antoniou 2005) and dealt in more
depth for non-classical logics by Ribeiro (Ribeiro 2012). For
the definition of the reinterpretation operators the constraint
is not essential. Nonetheless, they lead to constraints in pro-
viding appropriate counter examples: namely ontologies ex-
pressible in the DL at hand.

6 Conclusion
The paper discussed iterative applications of reinterpretation
operators meant to handle conflicts due to ambiguous use
of symbols in related and well-developed ontologies. Rein-
terpretation operators may also be used for solving consis-
tencies not due to ambiguity but due to false information—
and indeed, the related revision operators in (Delgrande and
Schaub 2003) do not talk about ambiguity. But reinterpre-
tation operators cannot be used to solve inconsistencies that
clearly cannot be explained by ambiguity: namely consisten-
cies due to different constraints of the sender and the receiver
regarding the number of possible objects in the domain (this
was discussed under the term reinterpretation compatibility
in (Özçep 2008)).

The reinterpretation for triggering literals were shown to
fulfill (adapted versions of) classical iteration postulates of
Darwiche and Pearl (Darwiche and Pearl 1994) whereas the
reinterpretation operators for ontologies were shown in gen-
eral not to fulfill them. Some of the postulates were criti-
cized for general reasons. Nonetheless, still one may con-
sider other forms of reinterpretation operators that incorpo-
rate the reinterpretation history in order to define dynamic
operators: For example one might weight symbols accord-
ing to the number of times they were reinterpreted and then
use a comparison of the weights in the next iteration step in
order to decided which symbols to reinterpret next.

In addition to the general criticisms I discussed the ade-
quateness of the other postulates in view of the special on-
tology change scenario. Here one cannot guarantee the ful-
fillment by reinterpretation operators that implement a uni-
form reinterpretation. But uniformity is necessary in order
to guarantee the fulfillment of postulates that express the
preservation and reconstructibility of the ontologies in the
revision result.

Appendix: Proofs
Proof of Proposition 2
For the proof we need the following lemma
Lemma 1 For all X2 ∈ B(σV)

`

(OσV ∪O1 ∪O2) there is
a X1 ∈ B(σV)

`

(OσV ∪O1) such that X2 ⊆ X1.
Proof. If OσV ∪ O1 ∪ O2 ∪ X2 is consistent, so is O1 ∪
O2 ∪X2. If X2 is not maximal, then there is a superset X1

in B(σV)

`

(OσV ∪O1). �
Define the following sets

X1 = γ(B(σV)

`

(OσV ∪O1))

X2 = γ(B(σV)

`

(OσV ∪O1 ∪O2))

With this notation we have (O⊗γ O1)∪O2 = OσV ∪O1 ∪
O2 ∪X1 and (O⊗γ O1)∪O2 = OσV ∪O1 ∪O2 ∪X2. As-
sume that (O⊗γ2O1)∪O2 is consistent. Then there is aX ′ ∈
B(σV)

`

(OσV∪O1∪O2) withX1 ⊆ X ′. Because of Lemma
1 there is a X ′′ ∈ B(σV)

`

(OσV ∪ O1) with X ′ ⊆ X ′′.
Hence X1 ⊆ X ′′. But as X1 is inclusion maximal, one gets
X1 = X ′′ = X ′ and henceX1 ∈ B(σV)

`

(OσV ∪O1∪O2).
Due to Lemma 1 the first precondition for maximum based
selection functions was shown to hold. Now we showed also
that the second condition holds, hence X1 = X2. In partic-
ular: O ⊗γ (O1 ∪O2) = (O ⊗γ O1) ∪O2.

112 iterated ontology revision by reinterpretation

Proof of Proposition 3
All results hold trivially if O is not consistent. So for the
following assume that O is consistent.
Proof of 1. In the following let ◦ ∈ {⊗,�,⊕sel}.

Proof for (RDP 1): As O1 and O2 are trigger literals,
O2 |= O1 holds iff O1 = O2. Hence (O ◦ O1) ◦ O2 =
(O ◦ O2) ◦ O2 = O ◦ O2, as the reinterpretation operators
fulfill the success postulate.

Counterexample for (RDP 2): Let O = {A(b)}, O1 =
{A(a)} and O2 = {¬A(a)}. Then O1 ∪ O2 |= ⊥. On the
one hand O ◦ O2 = {A(b),¬A(a)} |= A(b); on the other
hand (O◦O1)◦O2 = {A(b), A(a)}◦2{¬A(a)} 6|= A(b) due
to Proposition 1.3 (for the weak operators) and Proposition
1.4 (for the strong operators) and again due to 1.3 for the
selection based operators ⊕sel, as in this case (O ⊗ O1) ⊗
O2 ≡ (O ⊕sel O1)⊕sel O2.

Proof for (RDP 3): Let O ◦ O2 |= O1.
Case 1: O∪O2 is consistent. As O1 are O2 literals, O2 |=

O1 means that O1 = O2. Now (O ◦O1) ◦ O2 = (O ◦ O2) ◦
O2 = O ∪O2 = O ◦ O2.

Case 2: O ∪ O2 is inconsistent. We show the proof for
O2 = {A(a)}. (The case that O2 = {¬A(a)} is proved
similarly.) Subcase 2.1: A /∈ V(O1). Then from O ◦2 O2 |=
O1 and Proposition 1.1, it follows that O |= O1, hence (O ◦
O1) = O ∪ O1. Because of 1.1 one has: (O ∪ O1) ◦ O2 |=
O1. Subcase 2.2: A ∈ V(O1). Let ◦ = ⊗. Because of O ◦
O2 |= O1 and Proposition 1.3 it must be the case that O1

contains A positively, i.e., O1 = {A(c)}. Because ⊗ fulfills
the success postulate O⊗ {A(c)} |= {A(c)} and hence also
(O⊗{A(c)})∪{a 6 .= c} |= {A(c)}. Because of Proposition
1.2 one gets (O ⊗ {A(c)}) ⊗2 {A(a)} |= {A(c)}. Now
consider the case ◦ = �. If A is positive in O1, then O1 =
{A(c)}. In this case again Proposition 1.2 gives the result
(O � O1) � O2 |= O1. In the other case O1 is of the form
O1 = {¬A(c)}; using the assumptionO◦O2 |= O1 one gets
with Proposition 1.4 that O |= ¬mscO(a)(c) and O |= O1.
In particular O� O1 = O ∪O1 ≡ O. Also mscO�O1

(a) =
mscO(a). Hence fromO |= ¬mscO(a)(c) we getO�O1 |=
¬mscO�O1

(a)(c). Because O � O1 |= O1 holds, one can
infer with Proposition 1.4 that (O�O1)�2O2 |= O1. With
a similar argument and Proposition 1.5 one can show that
the results holds for ◦ = ⊕sel.

Proof for (RDP 4): Let O1 ∪ (O ◦ O2) be consistent.
Case 1: O ∪ O2 is consistent. Then O ◦ O2 = O ∪ O2

and so O1 ∪ (O ∪ O2) 6|= ⊥ due to assumption. But then
O ◦ O1 = O ∪O1.

Case 2: O ∪O2 is not consistent. If also (O ◦ O1) ∪O2is
consistent, then (O ◦ O1) ◦ O2 = (O ◦ O1) ∪ O2. As O ◦
O1 |= O1 we then have (O ◦ O1) ◦ O2 |= O1, in particular
O1 ∪ (O ◦O1) ◦O2) 6|= ⊥. Therefore consider now the case
that (O ◦ O1) ∪O2 is inconsistent.

We show the result for O2 = {A(a)} (The argument for
negative literals is similar). Subcase 2.1: A /∈ V(O1). Due
to success, O ◦O1 |= O1 and with Proposition 1.1 it follows
that (O◦O1)◦O2 |= O1. Because (O◦O1)◦O2 is consistent
so is O1∪ (O ◦O1)◦O2. Subcase 2.2: A ∈ V(O1). Assume
O1∪(O◦O1)◦O2 |= ⊥. IsO1 of formO1 = {¬A(c)}, then
due to Proposition 1.2 it holds that O1 ∪ O ◦ O1 ∪ {a 6 .= c}
is not consistent. Because O ◦ O1 |= O1 this can be the

case only if O ◦ O1 |= a
.
= c. Then O1 = {¬A(a)} which

contradicts the assumption O1 ∪ (O ◦ O2) 6|= ⊥.
IfO1 has the formO1 = {A(c)}, then, due to Proposition

1.3, this can only be the case if ◦ = � or ◦ = ⊕sel. With the
assumption that (O1∪(O◦O1)◦O2 is not consistent, i.e. (O◦
A(c))◦A(a) |= ¬A(c), one could infer with Proposition 1.4
and 1.5 thatO◦A(c) |= ¬A(c) which would mean thatO1∪
(O ◦ O1) is not consistent—-contradicting the consistency
of O � O1 and the fact that O �2 O1 |= O1.
Proof of 2. Counter example for (RDP 1): Consider

O = {¬A(a)}
O1 = {(A tB)(a)}
O2 = {A(a)}

Let be γ an arbitrary selection function that prefers the rein-
terpretation of role and concept symbols. Then we get on
the one hand O⊗γ O2 = {¬A′(a′), A(a), A′ v A, a .

= a′}.
And so O ⊗γ O2 6|= B(a). On the other hand O ⊗γ O1 =
{¬A(a), (A tB)(a)} |= B(a). And last

(O ⊗γ O1)⊗γ O2 = {¬A′(a′), (A′ tB′)(a′), A(a),

A′ v A, a .
= a′, B v B′,

B′ v B}
But then (O ⊗γ O1) |= B(a),

Counter example for (RDP 2): See counter example for
triggering literals.

Counter example for (RDP 3):

O = {A(a),∃R1.A v ¬B,R1(a, c),∃R2.A v A,
R2(b, e)}

O1 = {¬A(b)}
O2 = {¬A(a), B(a), A(e),∃R3.A v A,R3(c, b)}

For all selection functions γ that prefer the reinterpretation
of concept and role symbols one has:

O ⊗γ O1 = O ∪O1

O ⊗γ O2 = OσV ∪O2 ∪ B(σV) \ {A′ v A}
|= ¬A(b)

(O ⊗γ O1)⊗γ O2 = (O ∪O1)σV ∪O2 ∪
B(σV) \ {A′ v A,A v A′}

6|= ¬A(b)

Note that the O,O1, O2 have simple structures and do not
presuppose complex DL constructors.

Counter example for (RDP 4): Consider:

O = {B(a), B(b) ∨ C(b)}
O1 = {¬A(a),¬B(b)}
O2 = {¬B(a) ∨A(a),¬B(b),¬C(b)}

Choose γ such that the following results hold:

O ⊗γ2 O2 = {B′(a′), B′(b′) ∨ C ′(b′),
¬B(a) ∨A(a),¬B(b),¬C(b),

a
.
= a′, b

.
= b′,

C v C ′, C ′ v C,B v B′}
6|= ¬

∧
O1

113

O ⊗γ2 O1 = {B(a), B(b) ∨ C(b),

¬A(a),¬B(b)} |= C(b)

(O ⊗γ2 O1)⊗γ2 O2 = {B′(a′), B′(b′) ∨ C ′(b′),
¬A′(a′),¬B′(b′),¬B tA(a),

¬B(b),¬C(b), a
.
= a′, b

.
= b′,

B v B′, B′ v B,C v C ′,
A′ v A} |= ¬

∧
O1

Note that we use here boolean ABoxes. As in the previous
counterexample a purely DL counter example with standard
ABoxes should be constructible.
Proof of 3. Counter examples for (RDP 1), (RDP 3) und
(RDP 4): Consider the same set of ontology axioms as in the
corresponding counter examples for the weak reinterpreta-
tion ⊗γ . The selection function γ can be chosen such that
the same results follow as in the case of ⊗γ .

Counter example for (RDP 2): See counter example for
triggering literal.

References
Ahmeti, A.; Calvanese, D.; and Polleres, A. 2014. Updating
RDFS aboxes and tboxes in SPARQL. In Mika, P.; Tudo-
rache, T.; Bernstein, A.; Welty, C.; Knoblock, C. A.; Vran-
decic, D.; Groth, P. T.; Noy, N. F.; Janowicz, K.; and Goble,
C. A., eds., The Semantic Web - ISWC 2014 - 13th Inter-
national Semantic Web Conference, Riva del Garda, Italy,
October 19-23, 2014. Proceedings, Part I, volume 8796 of
Lecture Notes in Computer Science, 441–456. Springer.
Alchourrón, C. E.; Gärdenfors, P.; and Makinson, D. 1985.
On the logic of theory change: partial meet contraction and
revision functions. Journal of Symbolic Logic 50:510–530.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
Poggi, A.; Rodrı́guez-Muro, M.; and Rosati, R. 2009. On-
tologies and databases: The DL-Lite approach. In Tessaris,
S., and Franconi, E., eds., Semantic Technologies for Infor-
mations Systems – 5th Int. Reasoning Web Summer School
(RW 2009), volume 5689 of Lecture Notes in Computer Sci-
ence. Springer. 255–356.
Darwiche, A., and Pearl, J. 1994. On the logic of iterated
belief revision. In Fagin, R., ed., Proceedings of the 5th Con-
ference on Theoretical Aspects of Reasoning about Knowl-
edge (TARK-94), 5–23.
Darwiche, A., and Pearl, J. 1997. On the logic of iterated
belief revision. Artificial intelligence 89:1–29.
Delgrande, J. P., and Schaub, T. 2003. A consistency-based
approach for belief change. Artificial Intelligence 151(1–
2):1–41.
Delgrande, J. P. 2008. Horn clause belief change: Contrac-
tion functions. In Brewka, G., and Lang, J., eds., Principles
of Knowledge Representation and Reasoning: Proceedings
of the 11th International Conference, KR 2008, Sydney, Aus-
tralia, September 16-19, 2008, 156–165. AAAI Press.
Eschenbach, C., and Özçep, Ö. L. 2010. Ontology revi-
sion based on reinterpretation. Logic Journal of the IGPL
18(4):579–616. First published online August 12, 2009.

Flouris, G.; Manakanatas, D.; Kondylakis, H.; Plexousakis,
D.; and Antoniou, G. 2008. Ontology change: classification
and survey. The Knowledge Engineering Review 23(2):117–
152.
Flouris, G.; Plexousakis, D.; and Antoniou, G. 2005. On ap-
plying the AGM theory to dls and OWL. In Gil, Y.; Motta,
E.; Benjamins, V. R.; and Musen, M. A., eds., The Semantic
Web - ISWC 2005, 4th International Semantic Web Confer-
ence, ISWC 2005, Galway, Ireland, November 6-10, 2005,
Proceedings, volume 3729 of Lecture Notes in Computer
Science, 216–231. Springer.
Freund, M., and Lehmann, D. J. 2002. Belief revision and
rational inference. Computing Research Repository (CoRR)
cs.AI/0204032.
Goeb, M.; Reiss, P.; Schiemann, B.; and Schreiber, U. 2007.
Dynamic TBox-handling in agent-agent-communication. In
Beierle, C., and Kern-Isberner, G., eds., Dynamics of Knowl-
edge and Belief. Proceedings of the Workshop at the 30th
Annual German Conference on Artificial Intelligence (KI-
2007), 100–117. Fernuniversität in Hagen.
Gutierrez, C.; Hurtado, C.; and Vaisman, A. 2011. Rdfs
update: From theory to practice. In Proceedings of the 8th
Extended Semantic Web Conference on The Semanic Web:
Research and Applications - Volume Part II, ESWC’11, 93–
107. Berlin, Heidelberg: Springer-Verlag.
Kharlamov, E.; Zheleznyakov, D.; and Calvanese, D. 2013.
Capturing model-based ontology evolution at the instance
level: The case of dl-lite. J. Comput. Syst. Sci. 79(6):835–
872.
Lembo, D.; Mora, J.; Rosati, R.; Savo, D. F.; and
Thorstensen, E. 2015. Mapping analysis in ontology-based
data access: Algorithms and complexity. In et al., M. A., ed.,
The Semantic Web - ISWC 2015 - 14th International Seman-
tic Web Conference, Bethlehem, PA, USA, October 11-15,
2015, Proceedings, Part I, volume 9366 of Lecture Notes in
Computer Science, 217–234. Springer.
Meilicke, C., and Stuckenschmidt, H. 2009. Reasoning sup-
port for mapping revision. Journal of Logic and Computa-
tion.
Özçep, Ö. L. 2008. Towards principles for ontology inte-
gration. In Eschenbach, C., and Grüninger, M., eds., FOIS,
volume 183, 137–150. IOS Press.
Özçep, Ö. L. 2012. Minimality postulates for semantic inte-
gration. In Konieczny, S., and Meyer, T., eds., Proceedings
of the workshop BNC@ECAI2012, 47–53.
Qi, G.; Ji, Q.; and Haase, P. 2009. A conflict-based operator
for mapping revision. In et al., B. C. G., ed., Proceedings
of the 22nd International Workshop on Description Logics
(DL-09), volume 477 of CEUR Workshop Proceedings.
Ribeiro, M. M., and Wassermann, R. 2009. Base revision
for ontology debugging. J. Log. Comput. 19(5):721–743.
Ribeiro, M. 2012. Belief Revision in Non-Classical Logics.
SpringerBriefs in Computer Science. Springer.

114 iterated ontology revision by reinterpretation

Law Tests for Semantically-Safe Rule Interchange

Adrian Paschke and Tara Athan
Freie Universitaet Berlin

Abstract

In this paper, we extend a highly successful trend in software
engineering (SE), namely test-driven development, to define
self-validating rule bases to safeguard rule interchange in dis-
tributed environments such as the Web. The concept of a law
test is introduced as a way of compactly representing a col-
lection of test matching a predefined pattern, or “law”. Sets
of law tests, associated with multiple laws, can be used to
provide evidence of the semantically correct execution of an
interchanged rule-based Logic Program (LP) in a target ex-
ecution environment, such as a inference service or agent,
by running, in the target inference engine, the law tests at-
tached to and interchanged with the LP. Even in cases when
the service/agent does not provide explicit information about
its supported semantics, e.g. by its interface description, some
failed law tests can be used to prove that the intended seman-
tic properties for the interchange rule program are violated
by the implemented semantics, while successful law tests can
provide evidence that the intended semantics is supported.

1 Introduction
A strong demand for rule-based functionalities comes from
the distributed systems and Web community, in particu-
lar in the area of Semantic Web (SW). Here ever larger
and more complex rule bases are increasingly managed and
maintained in a distributed environment and interchanged
over domain and system boundaries between platform-
specific inference engines using more-or-less standardized
rule markup interchange formats such as RuleML1. The cor-
rect execution of the interchanged rule-based LPs depends
on both the intended semantics of the interchanged LP and
the actual (implemented) semantics of the inference engine
used at the target SW service/agent.

The contribution of this paper is a test-driven approach
supporting semantically-safe rule interchange and verifica-
tion & validation (V&V) of inference engines provided e.g.
as open SW inference services or rule-based agents on the
Web. Tests, which are typically interchanged together with
an LP, can support decisions as to whether that LP has the
intended behavior if it is executed in the target environment
(Paschke 2006; Paschke et al. 2006; Dietrich and Paschke

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://ruleml.org

2005). Our new contribution are “law tests”, which probe
the supported laws of the logic of a knowledge representa-
tion (KR) language of interest and their semantic properties
(LP semantics and non-monotonic semantics).

We first present some background in LP semantics in sec-
tion 2. In section 3 we introduce our conceptual solution us-
ing law tests for probing the laws of logic of an inference
engine. In section 4 we further refine this idea of law tests
for deciding if an interchange rule program can be correctly
interpreted with the semantics supported by the target infer-
ence service/agent. We demonstrate and evaluate the con-
cept by a proof-of-concept implementation in section 5. In
section 6 we discuss related work and we conclude the paper
in section 7 with future work.

2 Background
It is beyond the scope of this paper to review or compare
all the different LP- and NMR (non-monotonic reasoning)-
semantics. For an overview we refer to (Apt and Bol 1994;
Minker 1993; Dix 1995a). We give some general definitions
and an initial taxonomy of semantics and LP classes.
Definitions

For the scope of this paper, we will assume all intended
and implemented semantics are based on the 3-valued Her-
brand semantics of the connectives∧,∨,¬ as well as “weak”
(Lukasiewicz) implication← and equivalence↔.

• A semantics SEM of a class of programs L (the LP class
of SEM) is a mapping that assigns to each member P of
L a value SEMP in the powerset of 3-valued Herbrand
models on LP , the restriction of L to the nonlogical con-
stants that appear in P .

• If U is a set of atoms, then SEMP∪U may be written as
SEMP (U).

• A sceptical entailment relation (SEMscept,P or |∼P) is
defined from sets of atoms to sets of literals, such that
U |∼P V iff every v ∈ V is a Lukasiewicz consequence
of M (M |= V) for every M ∈ SEMP (U). If U is the
empty set, it may be omitted. The entailment relation is
extended to single atoms and literals by considering them
as singleton sets.

• A semantics SEM ′ extends a semantics SEM (denoted
by SEM ′ ≥ SEM) iff for all P in LP , the LP class

115

Figure 1: Classes of LPs. Lines between classes represent
containment, with the larger (more expressive) class higher
in the diagram.

Figure 2: Semantics for LPs and their Extension Relations.

of SEM , SEM ′scept,P ⊇ SEMscept,P . Note that if
SEM ′ extends SEM , then the LP class of SEM ′ L′P ⊇
LP .

• A semantics SEM ′ conservatively extends a semantics
SEM (denoted by SEM ′ ≥c SEM) iff SEM ′ extends
SEM and SEM ′scept,P equals SEMscept,P for all P ∈
LP , the LP class of SEM .

• Lukasiewicz tautologies, e.g. a= p← p, are denoted |= a.

Figure 1 shows different classes of LPs partially-ordered
by expressiveness, i.e. a more expressive class Q′ includes a
less expressive class Q. For example, the class of extended
disjunctive LPs is more expressive than the class of normal
LPs; it extends the normal LP class with explicit negation
and disjunctions.

Figure 2 illustrates the partial orderings ≥ and ≥c of se-
mantics on LP classes up to general disjunctive LPs, with
semantics having larger LP classes higher in the diagram.
Lines between the semantics represent conservative exten-
sions (≥c), while non-conservative extensions are indicated
with ≥.

An LP P can be executed by an inference engine if and
only if all of the following holds:

• P is in the LP class of the implemented semantics SEM ′
of the inference engine.

• the literals entailed by P under the implemented seman-
tics of the inference engine that are in the LP class of the
intended semantics SEM are entailed under the intended
semantics.

• the literals entailed by P under the intended semantics
SEM are entailed under the implemented semantics of
the inference engine.

If SEM ′ ≥c SEM , then all conditions above hold; thus
it is a sufficient (but not necessary) condition for P to be
executable by an inference engine that the implemented se-
mantics be a conservative extension of the intended seman-
tics2. This information about the semantics may be given
by explicit annotations, e.g. referencing predefined seman-
tic profiles (see e.g. RuleML’s semantic profile mechanism
(Paschke 2014)), or it may need to be determined.

3 Concept - Law Tests
In the context of rule interchange with open, distributed in-
ference engines, which might be provided as open inference
services, an important question is, whether the inference en-
gine correctly implements a semantics. Tests, possibly inter-
changed together with the LP, can be used to support veri-
fication and validation of the execution of the interchanged
LP in the target environment and therefore establish trust in
this service.

Following sofware engineering standards, e.g.
(ISO/IEC/IEEE 29119-1 2013), we make use of the
following terminology about testing in general:

• a test case is a performative, typically a query, together
with the expected result.

• A test suite, a set of assertions (which may be logic pro-
grams or ground facts) together with a set of tests.

• A test is a test case or a test suite.

• A test program is a logic program asserted within a test
suite.

At the lowest level of evaluation, the performative of each
test case is executed on the appropriate assertions (if any).
It succeeds if the actual results agree with the expected re-
sults, and fails otherwise, i.e., if there is no termination or
the actual results do not agree with the expected results. The
typical test protocol for a test suite is that it succeeds if and
only if all the tests it contains succeed, but other test proto-
cols are allowed, as we will see below.

For example, consider a test suite asserting a simple test
program with the following rules:
Example 3.1. Simple LP
a <- ¬b
b <- ¬a
c <- a

c <- b

2However note, that the complexity of SEM ′ in most cases is
higher then in SEM if SEM ′ is an extension of SEM , and hence
for performance reasons an inference engine supporting only the
intended semantics SEM is typically optimal for programs of the
LP class for which SEM is defined.

116 law test suites for semantically-safe rule interchange

and containing one test case T = {c? => true}, i.e., the
test query performative c? which as expected result should
yield true. In the case that the inference engine supports sta-
ble model semantics (STABLE) this test case, and the test
suite, succeeds.

However, if the inference engine supports well-founded
semantics (WFS) the test query leads to the actual result
”unknown” and accordingly the test case, and the test suite,
fails.

While the test suite described above directly relates to the
V&V of a particular interchanged LP with a particular se-
mantics, it is a cumbersome task to develop such tests. Fur-
ther, these tests are limited in scope - in a context where one
of a limited number of semantics is known to be correctly
implemented, one or a few such tests may be sufficient to
discriminate between the possible implemented semantics.
However, a systematic approach to developing tests based on
the properties, or laws, of the intended semantics is needed
to support target engine selection in a more general context.

We define a law test to be a test whose failure indicates
that a particular law does not hold in the implemented se-
mantics, and whose success provides evidence that the law
holds in the implemented semantics. In general, a law test
suite is a test suite that is a law test, and a law test case is
a law test that is a test case. In this paper, we are concerned
only with a particular form of law test suite where the tests it
contains are organized into two suites: a pre-test suite and a
post-test suite with one test case. For the law test to succeed,
either the pre-test suite must fail or the post-test suite must
succeed.

Law tests can be used to assess the correctness of the se-
mantics of an inference engine or to automatically determine
the semantics of an inference engine, e.g., in cases when the
semantics of the receiving inference service/agent is not ex-
plicitly stated. Individual law tests are used to probe the laws
of an implemented semantics, such as the supported rules of
inference, or its structural properties. By applying a num-
ber of law tests to a particular inference service/agent, the
implemented semantics provided by the engine can be par-
tially characterized by the set of successful and failed law
tests.

For example, SLDNF resolution typically suffers from
loops, whereas e.g. SLG resolution implements some form
of loop checking and loop prevention. A simple law test for
(partially) verifying the “law” of loop avoidance might be,
e.g., the following test program:
Example 3.2. Loop LP
a

b

a <- b

b <- a

and the test case {a? => true}, which succeeds for
an inference engine supporting reflexivity and loop preven-
tion, e.g. WFS, whereas for an inference engine supporting
COMP and SLDNF resolution it does not terminate, demon-
strating the lack.

Another problem of SLDNF resolution is that it cannot
handle free variables in negative subgoals due to the proce-
dural negation-as-finite-failure, e.g.:

Example 3.3. Free Variables in Negative Subgoals LP
q(b)

r(f(a))

p(X) <- ¬q(X), r(f(X))

The test case {p(a)? => true} succeeds when the
implemented semantics is SLDNF. However, a test case
{p(X)? => true : {X/a}} with the expected variable
binding X = a fails, because the negation-as-failure tree
is entered with a free variable, which fails due to the fact
that no variable binding for X is computed, even though
r(f(X)) holds and q(a) does not. This problem is also
known as the floundering problem, so the above test may
be considered a law test for the “no-floundering law”.

For more unsolvable problems that can be used for testing
SLDNF semantics see e.g. (Shepherdson 1991). Other well-
known problems and paradoxes from literature, e.g. Yale
Shooting Problem, which are solved by a particular seman-
tics or resolution, resp., can also be used as tests.

Tests of this sort can be bundled into larger suites of law
tests for assessing the validity of certain inference engine
implementations (resolution algorithm), semantics (e.g. by
testing the entailments) and logical calculi. These suites of
law tests can be either interchanged directly together with a
rule program or provided in a public testing repository ac-
cessible via a service interface, e.g., provided by standards
body such as RuleML.

4 Solution - Semantically Safe Rule
Interchange with Law Tests

To systematically test if an interchanged rule program (LP)
can be correctly interpreted with the supported semantics of
an inference service/agent we have proposed above the use
of suites of law tests for the intended semantic properties
of the interchanged program. In this section, we consider
how this approach can be applied to some known laws that
effectively discriminate between existing LP semantics.

Kraus et al. (Kraus, Lehmann, and Magidor 1990) and
Dix (Dix 1995b; 1995c) proposed several weak and struc-
tural (strong) properties for arbitrary (non-monotonic) se-
mantics. In the following we will briefly review these prop-
erties and show how they can be adapted to law tests.

The following structural properties for a sceptical entail-
ment relation |∼P are adapted from similar properties for
a classical logic language L as stated in (Kraus, Lehmann,
and Magidor 1990) and similar properties for normal LPs
in (Dix 1995b), where here the conventional proof format is
used for meta-level implications, the subscript is dropped on
the sceptical entailment relation when not needed, a, b are
atoms, f , g are literals, and C is a set of atoms, J , K are
sets of literals, P , Q are programs :

• Right Weakening: |=g←f , C |∼ f
C |∼ g

• Reflexivity: C |∼C
• And: C |∼ J, C |∼K

C |∼ J∪K

• Or: a |∼P J, b |∼P J
|∼P∪{a∨b} J

• Left Logical Equivalence: |=f↔g, f |∼ Jg |∼ J

117

• Cautious Monotony: |∼P J, |∼P K
|∼P∪J K

• Cut: |∼P J, |∼P∪J K
|∼P K

• Cumulativity (Cut and Cautious Monotony) If |∼P J then
|∼P∪J K if and only if |∼P K

• Rational Monotony: |�P ¬f , |∼P J
|∼P∪f J

• Disjunctive Rationality: a |�P J, b |�P J
|�P∪{a∨b} J

• Negation Rationality: |�P∪a J, |�P∪¬a J
|�P J

In addition to these structural/strong properties the fol-
lowing weak properties describing general conditions a rea-
sonable (sceptical) semantics should satisfy are derived from
(Dix 1995c) (programs consist of a set of rules of the form
H ← B where H and B are sets of formulas and a set of
facts that are formulas):

• Elimination of Tautologies: If a tautological rule (|= H ←
B) is eliminated from a program P , then the resulting pro-
gram P ′ is semantically equivalent. I.e., SEMscept,P =

SEMscept,P ′ where P ′ = P \ {H ← B} and H ⊆ B.

• Generalized Principle of Partial Evaluation (GPPE): If a
rule H ← B, where B contains a subgoal b, is replaced
in a program P ′ by the n rules H ∪ (Hi − b) ← ((B −
b) ∪Bi), where Hi ← Bi are all rules for which b ∈ Hi,
then the SEMscept,P = SEMscept,P ′

• Positive/Negative Reduction: If a rule H ← B is replaced
in a program P ′ byH ← B\{¬c}) (c is a formula) where
c appears in no rule head, or a rule H ← B is deleted
from P where there is a fact a in P such that ¬a ⊆ B,
then SEMscept,P = SEMscept,P ′

• Elimination of Non-Minimal Rules/Subsumption: If a rule
is deleted from a program P when there is another rule
that subsumes it, then the resulting program P ′ is seman-
tically equivalent. I.e., SEMscept,P = SEMscept,P ′ if
there are distinct rules H ← B and H ′ ← B′ ∈ P such
that B ⊂ B′ and H ⊂ H ′ and P ′ = P \ {H ← B}

• Closure: The reduction of P by its entailments has no new
entailments. I.e., SEMscept,P

SEMscept,P
= ∅, where the

reduction PM of a program by a consistent set of literals
M is defined in (Dix 1995c) as a transformation from LP
into LP\M .

• Independence:The truth value of a literal c with respect
to a semantics SEMP does not change when P is ex-
tended by a program P ′ in a disjoint language. I.e., |∼P c
iff |∼P∪P ′ c provided that the languages of P and P ′ are
disjoint and c belongs to the language of P .

• Relevance: The truth value of a literal c with respect to
a semantics SEMP , only depends on the subprogram
formed from the relevant rules of P (relevant(P)) with
respect to c: |∼P c iff |∼relevant(P,c) c
Table 1 shows for some common semantics the properties

that they satisfy.

In the first category of properties for a reasonable seman-
tics we mainly focus on Rational Monotony and Cumula-
tivity, since in the settings of the redefined sceptical con-
sequence relation the properties Right Weakening, Reflexiv-
ity, Left Logical Equivalence are trivial and always satisfied
for the intended sceptical semantics3 which we consider in
this paper. Cumulativity can be tested using tests for Cut and
Cautious Monotony, since it is equivalent to their combi-
nation. Further, satisifaction of Rational Monotony implies
Cautious Monotony, Disjunctive Rationality and Negation
Rationality: Rationality ⇒ DisjunctiveRationality ⇒
Negation Rationality.

The other properties such as Or are useful in the con-
text of disjunctive LPs, e.g. to distinguish between an ex-
clusive and an inclusive interpretation of ∨. Cut is a nat-
ural condition for non-monotonic formalisms. To test Cut
resp. Cautious Monotony we only need to add those atoms
that have to be added in order to satisfy Cut resp. Cautious
Monotony such that SEMP ≤ SEMP (Mi) where Mi is
as sequence of atoms a added to P with M0 = ∅. Ratio-
nal Monotony is in any sceptical semantics a stronger form
of Cautious Monotony because a |∼ b ⇒ not a |∼¬b. Ra-
tional Monotony can be inductively proved SEMP (Mi) ≤
SEMP (Mi+1) with M0 = ∅ and a maximum Mj .

If we can find an extension of atoms to an initial program
such that this extension violates the property under test, we
have a counter example, and the law test which queries for
this atom will have an expected result of false. We reuse this
counter example as a law test case to assess whether an ar-
bitrary inference engine, i.e., the semantics implemented by
this inference engine, solves this counter example. If the law
test is successful the inference engine may satisfy this prop-
erty. To demonstrate this approach we will now give some
examples for testing the properties as defined by (Dix 1995b;
1995c).

Given LPs P0, P1, ... and P ′ as well as multiple test cases,
T0, T1, ... and T ′, the law test suite {(P0, T0), (P1, T1), ...},
called the “pre-test suite” and (P ′, T ′), called the “post-
test”, together form a conditional law test. The conditional
law test fails if every test case Ti in the pre-test suite is
passed when applied to its test program Pi and the post-test
case T ′ fails when applied to its test program P ′ – otherwise,
the conditional law test succeeds.

An engine might fail the pre-test suite due to some Pi
being outside of its input language, or when the expected re-
sults are not obtained because preconditions of the semantic
property are not satisfied. In either of these cases, it is not
possible to draw a conclusion about the property, whether
the post-test fails or not - this is not evidence that the law
holds. However, each such success of a law test when the
pre-test suite succeeds provides some evidence that the law
holds for the implemented semantics, and the accumulation
of the evidence from multiple law tests may be used to in-
form a decision about the applicability of the implemented
engine.
Example 4.1. STABLE does not satisfy Cautious Monotony
P0: a <- ¬b P’: a <- ¬b

3Such laws are still useful in V&V of implemented semantics.

118 law test suites for semantically-safe rule interchange

Table 1: Table (General Properties of Semantics)
Semantics Class Cumul. Rat. Taut. GPPE Red. Non-Min. Rel. Cons. Indep.

COMP Normal - • - • • • - - -
COMP3 Normal • • - • • • - - -

WFS Normal • • • • • • • • •
STABLE Normal - • • • • • - - -
WGCWA Pos. Disj. - • - • • - • • •
CGWA Strat. Disj. • - • • • • • • •

PERFECT Strat.Disj. • - • • • • - • •

b <- ¬a b <- ¬a
c <- ¬c c <- ¬c
c <- a c <- a

c

T0=T’: a=>true, c=>true

STABLEP has {a, ¬b, c} as its only stable model and
hence it derives a and c, i.e. T0 succeeds. But, by adding
the derived atom c to P we get P ′ := P0 ∪ {c} where
STABLEP ′ has another stable model {¬a, b, c}, i.e. a can
no longer be derived (i.e. T ′ fails) and cautious monotony is
not satisfied.
Example 4.2. O-SEM is not rational
P: a <- ¬a P’: a <- ¬a

p <- a p <- a

q <- ¬p q <- ¬p
a

T0 = T’ : ¬p => true, q=>true

O−SEMP derives {¬p, q} from P since ¬a is not deriv-
able. Hence, T0 succeeds. But P ′ := P ∪ a derives {a, p}
and therefore ¬p and q are not derivable (T ′ now fails), as
Rational Monotony would require.
Example 4.3. EWFS does not satisfy CUT
P: d <- ¬c P’: d <- ¬c

a <- ¬a a <- ¬a
b <- ¬x, a b <- ¬x, a

c <- ¬b c <- ¬b
b

T0 = T’:= a=>true, b=>true, ¬c=>fail, d=>fail

EWFSP entails {a, b,¬x} and hence ¬c and d fail, i.e.
T0 succeeds. But EWFSP ({b}) entails {a, b,¬x,¬c, d}.
Thus T ′ fails for the extended program P ′ with the derivable
atom b added; thus Cut, and accordingly Cumulativity are
not satisfied.

Similarly, conditional law test to show that REG-SEM is
not Cumulative may be constructed.

Note that in all conditional law test examples above, the
post-test consists of a program that is an extension of the
program of the pre-test, and the test cases for pre- and post-
test are identical. The laws being considered here (Cumula-
tivity, Cautious Monotony, and Rational Monotony) are par-
ticularly amenable to conditional law tests of this compact
form; however, for other laws, and for broader testing, e.g.
for V&V, more general conditional law tests may be consid-
ered.

We will now take a look at the second kind of properties
for a reasonable semantics, the weak properties introduced

above. These properties are defined with respect to a seman-
tic equivalence relation SEMP = SEMP ′ for a particular
kind of program transformations from P to P ′. In a simi-
lar way as with the first kind of strong properties we can
provide sets of “pre-tests” and “post-tests”, which together
constitute a conditional law test. The post-tests are derived
from the initial programs via applying the defined transfor-
mations of the respective property/law of concern. Hence, if
the pre-test succeeds and the post-test fails it proves that the
implemented semantics does not satisfy this property.

Again, we will illustrate this with some examples:
Example 4.4. STABLE does not satisfy Relevance
P0: a <- ¬b P’: a <- ¬b

c <- ¬c
T0=T’: a=>true

The unique stable model of P0 is {a}. If the rule c← ¬c
is added, a is no longer derivable because no stable model
exists. Relevance is violated, because the truth value of a
depends on atoms that are totally unrelated to a.
Example 4.5. GWFS does not satisfy GPPE
P0: d <-¬b P’: d <-¬b

a <-¬b a <-¬b
b <- c b <- d,¬a
c <- d,¬a c <- d,¬a

T0=T’: ¬c=>true, ¬b=>true, d=>true, a=>true

The two-valued Herbrand models of P0 are {a, d} and
{b}. Since c is in neither minimal model, then ¬c is derived
by negation-as-failure (naf) in GWFS. In the next iteration,
the rule with c as subgoal is removed, so ¬b is derived by
negation-as-failure. Finally, {a, d} are derived based on ¬b.
Thus P0 entails {a,¬b,¬c, d} However, for P ′, ¬b does not
follow by naf, since c does not occur in the body of the rule
having b in the head; thus, P ′ entails only {¬c}. Hence al-
though P ′ partially evaluates P0, they are semantically not
equivalent, which violates the principle of GPPE.

Such law tests for checking for violations of either strong
or weak semantic properties provides us with a tool for sup-
porting the decision of what semantics should be used for
a particular application. For example, an application might
require small rule bases, e.g. because the rules are inter-
changed frequently. Obviously, here the principles of Elimi-
nation of Tautologies and Elimination of Non-Minimal Rules
are important, in order to keep the rule base as small as pos-
sible without changing its semantics.

Moreover, by taking both kinds of properties together a
semantics might be characterized by these, i.e. via applying

119

the complete law test suite consisting of the initial pre-test
programs and the post-tests, we can gather evidence as to
which properties are satisfied by an arbitrary semantics and
which are not. The initial pre-tests not only check the condi-
tions of the semantic properties, they also help to determine
whether this particular law test can be applied at all, e.g. it
might already give us a clue about the LP class supported
by the inference engine of concern. For example, a test pro-
gram including disjunctions or explicit negation might not
be supported by the inference engine.

Given that the pre-tests succeed, the failure of the post-
test provides a counter-example of the particular property of
concern. The derived set of satisfied and unsatisfied prop-
erties for a particular unknown semantics can then be com-
pared to known results for such properties of different se-
mantics. If the set of satisfied and unsatisfied properties de-
rived by applying the meta test programs in the target in-
ference engine, matches the satisfied and unsatisfied prop-
erties of a semantics for a particular LP class, this provides
evidence that the inference engine supports/implements this
semantics.

The semantic principles described in this section are also
very important in the context of applying refactoring to LPs.
In general, a refactoring to a rule base should optimize the
rule code without changing the semantics of the program.
Removing tautologies or non-minimal rules or applying pos-
itive/negative reductions are typically applied in rule base
refinements using refactoring (Dietrich and Paschke 2005)
and the semantic equivalence relation between the original
and the refined program defined for these principles is there-
fore an important prerequisite to safely apply a refactoring
of this kind.

5 Proof-of-Concept: Integration of Law Tests
into Testing Frameworks and Rule

Markup Languages
For our proof-of-concept implementation we use an ex-
tended ISO-Prolog-related scripting syntax (called Prova for
PROlog + JaVA). In Prova, variables start with a upper-
case letter, e.g. X,Y, Z, a constant/individual with a lower-
case letter, e.g. a, b, c and a query is written as a function
: −solve(...) or : −eval(...).

A law test script consists of a unique test ID de-
noted by testcase(<ID>), optional input asser-
tions such as input facts and test rules, an optional
pre-test defining the test queries and variable bind-
ings testSuccess(<Test Name>,<Optional
Message for Junit>), a post-test rule
testFailure(<Test Name>,<Message>) and
a runTest rule which is used by the meta program which
implements the test axioms. The conditional law tests are
interpreted by using the test rules to derive the success or
failure of each test case.
Example 5.1. Rulebase with Test Case
a():-not(b()).

:-solve(test(./examples/pre-tc1.test)).

a():-not(b()).

c():-not(c()).

:-solve(test(./examples/post-tc1.test)).

Test Case: tc1 := {a()? => true}
testcase("tc1.test"). % id

% positive test with success message for JUnit report

testSuccess("test1","succeeded"):-

testcase(tc1.test),a().

% negative test with failure message for Junit report

testFailure("test1","Relevance law violated"):-

not(testSuccess("test1",Message)).

% define the active tests - used by meta-program

runTest("./examples/pre-tc1.test"):-

testSuccess("test 1",Message).

runTest("./examples/post-tc1.test"):-

testFailure("test 1",Message).

The example shows the pre- and post test programs for
testing the Relevance law. The test test1 first runs the pre-
test deriving a(), and then tests with the post-test can no
longer be derived, i.e. Relevance is violated. The second ar-
gument in the testSuccess/testFailure heads specifies a suc-
cess resp. failure message which is used for reporting, e.g.
to create a JUnit test report. The runTest rule with the test
case ID as argument is evaluated by the meta-program im-
plementing the test functionality. A test case might define
several tests (testSuccess/testFailure).

Test cases can be bundled into test suites which are also
represented as LPs consisting of a test suite ID denoted by
test suite(< name >). and a list of test cases referenced
by their URI test case(< URI >).. For automated testing
we have implemented support for JUnit which runs the tests,
creates a final test report which gives the test coverage and
the failure and success messages of the executed tests.

A Test coverage measurement has been integrated into the
test framework. (Paschke 2006; Paschke et al. 2006). The
implemented coverage meta-program implements different
functions to compute e.g. the minimalized substitution of
two terms, the instances of clauses under the instance or-
der, the lgg of two clauses, the subsumption of clauses, the
generalized subsumption of two clause sets, the relative gen-
eralization and the coverage. The results are use to create an
automated test coverage report.

To support platform-independent rule interchange we
have integrated test case and updates into the Rule Markup
Language (RuleML 1.02) 4. It provides a rich syntax for
derivation and reaction rules and supports different LP
classes such as datalog, hornlog (with naf), extended (with
neg) disjunctive, FOL.

A markup serialization syntax for test performatives/test
suites/test cases and knowledge updates has been imple-
mented as an extension to Reaction RuleML 1.02 with the
following constructs:
Test ::= (vvi | Entails | TestSuite | TestCase)*
vvi ::= (Entails | TestSuite | TestCase)

TestSuite ::= (testbase | Assert | Consult)* ,

(vvi | Entails | TestSuite | TestCase)*
TestCase ::= (do | Assert | Retract | Update |

Query | Answer | Test | Send | Receive |

Action | Consult) , (expectedResult | Answer)

4http://ruleml.org/1.02

120 law test suites for semantically-safe rule interchange

The vvi (verification, validation, integrity) tests of a
TestSuite are a set of entailments Entails, nested
TestSuites or single TestCases. A TestSuite consists
of one or more test bases testbase with assertions Assert
or consulted imports Consult and one or more vvi tests.
A single TestCase consist of a doable performative, such
as a Query and the predefined expectedResult such as an
Answer. The Test performative executes the tests it con-
tains.

The optional @style attribute can be used to assign meta-
information about the intended testing protocol of a test
performative, or the semantics (referenced semantic profile
Profile) of a test suite, or a test case, e.g. to select a particu-
lar semantics from a target inference engine that implements
several LP semantics.
<Test>

<TestSuite @style="semantics:STABLE">

<testbase> <Assert>

...test assertions

</Assert> </testbase>

<vvi> <TestCase>

<do><Query>

... test query

</Query> </do>

<expectedResult> <Answer>

... expected answer

</Answer> </expectedResult>

</TestCase></vvi>

</TestSuite>

<Test>

6 Related Work
V&V of KB systems and in particular rule-based systems
such as LPs with Prolog interpreters have received much at-
tention from the mid ’80s to the early ’90s, see e.g. (An-
toniou et al. 1998). Criteria for verification and validation
range from e.g. structural checks for relevance, redundancy
and reachability to semantics tests for completeness and
consistency. For a survey see (Preece 2001). Different ap-
proaches and methodologies to V&V of rule-based systems
have been proposed in the literature such as model check-
ing, code inspection, operational debugging (Byrd 1980)
via instrumenting the rule base and exploring the execution
trace, tabular methods (van Melle, Shortliffe, and Buchanan
1984), which pairwise compare the rules of the rule base to
detect relationships among premises and conclusions, meth-
ods based on formal graph theory (Ramaswamy, Sarkar, and
sho Chen 1997) or Petri Nets (He et al. 1999) which trans-
late the rules into graphs or Petri nets, methods based on
declarative debugging (Shapiro 1983) which build an ab-
stract model of the LP and navigate through it or methods
based on algebraic interpretation (Laita et al. 1999) which
transform a KB into an algebraic structure, e.g. a boolean
algebra which is then used to verify the KB.

Simple operational debugging approaches which instru-
ment the rules and explore its execution trace place a huge
cognitive load on the user, who needs to analyze each step
of the conclusion process and needs to understand the struc-
ture of the rule system under test. On the other hand, typi-
cal heavy-weight V&V methodologies are often not suitable

for rule-based systems, because they induce high costs of
change and do not facilitate evolutionary modelling of rule
bases. Model-checking techniques and methods based e.g.
on algebraic-, graph- or Petri-net-based interpretations are
computationally very costly, inapplicable for expressive rule
languages and presuppose a deep understanding of both do-
mains, i.e. of the testing language / models and of the rule
language and the rule inferences.

Tests are particular suitable when rule bases grow larger
and more complex and are maintained, possibly distributed
and interchanged, by different users. Due to their inherent
simplicity, tests better support different roles which are in-
volved during the engineering process and give an expres-
sive but nevertheless easy to use testing language since tests
are written in the same language as the tested rule program.
Research has also been directed at the test-driven refinement
of rule bases (Dietrich and Paschke 2005), on the automatic
generation of test cases, and test coverage measurement
computations for test suites. (Denney 1991; Luo et al. 1992;
Paschke 2006)

7 Conclusion and Future Work
In the context of rule interchange and selection of target in-
ference engines we have proposed a testing methodology
exploiting law tests to analyze the implementation specifics
of an inference engine with respect to general properties of
the semantics. The approach assesses the suitability of a tar-
get environment for the interchanged LP even if no further
meta-information about the execution environment is avail-
able. This helps to safeguard rule interchange.

The concepts introduced in the paper have been imple-
mented in an extended Prolog KR (called Prova) by integrat-
ing the law-test-driven development into the common testing
framework JUnit with support for automated Ant task execu-
tion. This adds tool-support for law-test-driven development
of logic programs.

Finally, we have introduced a concrete RuleML-based
syntax for serialization of law tests enabling standardized
platform-independent rule interchange.

We plan to extend our approach in several ways,

• automated law test instance generation from compact law
statements,

• applying automated refactoring,

• larger suites of law test to test logic programs and infer-
ence engines,

• in order to provide them as open services on the web, a
deeper and more fine-grained vocabulary to annotate rule
engines and logic programs/law tests.

Our vision is to reach a similar market maturity of test-
drive development in the agile development of rule programs
and rule-based knowledge engineering, as is available in Ex-
treme Programming for imperative software development.

8 Acknowledgments
This work has been partially supported by the Innopro-
file Transfer project “Corporate Smart Content” funded by

121

the German Federal Ministry of Education and Research
(BMBF) and the BMBF Innovation Initiative for the New
German Länder - Entrepreneurial Regions.

References
Antoniou, G.; van Harmelen, F.; Plant, R.; and Vanthienen,
J. 1998. Verification and validation of knowledge-based sys-
tems: Report on two 1997 events. AI Magazine 19(3):123–
126.
Apt, K. R., and Bol, R. 1994. Logic programming and nega-
tion: A survey. JOURNAL OF LOGIC PROGRAMMING
19:9–71.
Byrd, L. 1980. Understanding the control flow of prolog
programs. In Logic Programming Workshop.
Denney, R. 1991. Test-case generation from prolog-based
specifications. IEEE Software 8(2):49–57.
Dietrich, J., and Paschke, A. 2005. On the test-driven de-
velopment and validation of business rules. In Kaschek, R.;
Mayr, H. C.; and Liddle, S. W., eds., Information Systems
Technology and its Applications, 4th International Confer-
ence ISTA’2005, 23-25 May, 2005, Palmerston North, New
Zealand, volume 63 of LNI, 31–48. GI.
Dix, J. 1995a. Semantics of logic programs: Their intuitions
and formal properties. Logic, Action and Information, Es-
says on Logic in Philosophy and Artificial Intelligence (De-
Gruyter, 1995) 241–327.
Dix, J. 1995b. A classification theory of semantics of nor-
mal logic programs: I. strong properties. Fundam. Inform.
22(3):227–255.
Dix, J. 1995c. A classification theory of semantics of nor-
mal logic programs: Ii. weak properties. Fundam. Inform.
22(3):257–288.
He, X.; Chu, W. C.; Yang, H.; and Yang, S. J. H. 1999. A
new approach to verify rule-based systems using petri nets.
In COMPSAC, 462–467. IEEE Computer Society.
ISO/IEC/IEEE 29119-1. 2013. ISO/IEC/IEEE 29119-
1:2013 Software and systems engineering–Software testing–
Part 1: Concepts and definitions. ISO 29119.
Kraus, S.; Lehmann, D. J.; and Magidor, M. 1990. Non-
monotonic reasoning, preferential models and cumulative
logics. Artif. Intell. 44(1-2):167–207.
Laita, L. M.; Roanes-Lozano, E.; Maojo, V.; and Ledesma,
L. d. 1999. Computer algebra based verification and knowl-
edge extraction in rbs - application to medical fitness crite-
ria. In Collected Papers from the 5th European Symposium
on Validation and Verification of Knowledge Based Systems
- Theory, Tools and Practice, EUROVAV ’99, 53–65. De-
venter, The Netherlands, The Netherlands: Kluwer, B.V.
Luo, G.; Bochmann, G.; Sarikaya, B.; and Boyer, M. 1992.
Control-flow based testing of prolog programs. In Software
Reliability Engineering, 1992. Proceedings., Third Interna-
tional Symposium on, 104–113.
Minker, J. 1993. An overview of nonmonotonic reason-
ing and logic programming. Journal of Logic Programming,
Special Issue 17:95–126.

Paschke, A.; Dietrich, J.; Giurca, A.; Wagner, G.; and Lu-
kichev, S. 2006. On self-validating rule bases. In Proceed-
ings of the 2nd International Workshop on Semantic Web
Enabled Software Engineering (SWESE 2006).
Paschke, A. 2006. Verification, validation, integrity of
rule based policies and contracts in the semantic web. In
Proceedings of the 2nd International Semantic Web Policy
Workshop (SWPW’06), Nov. 5-9, 2006, Athens, GA, USA.
Paschke, A. 2014. Reaction ruleml 1.0 for rules, events
and actions in semantic complex event processing. In Rules
on the Web. From Theory to Applications - 8th Interna-
tional Symposium, RuleML 2014, Co-located with the 21st
European Conference on Artificial Intelligence, ECAI 2014,
Prague, Czech Republic, August 18-20, 2014. Proceedings,
1–21.
Preece, A. 2001. Evaluating verification and valida-
tion methods in knowledge engineering. MICRO-LEVEL
KNOWLEDGE MANAGEMENT 123–145.
Ramaswamy, M.; Sarkar, S.; and sho Chen, Y. 1997. Using
directed hypergraphs to verify rule-based expert systems.
Knowledge and Data Engineering, IEEE Transactions on
9(2):221–237.
Shapiro, E. Y. 1983. Algorithmic Program Debugging. MIT
Press.
Shepherdson, J. C. 1991. Unsolvable problems for sldnf
resolution. J. Log. Program. 10(1):19–22.
van Melle, W.; Shortliffe, E. H.; and Buchanan, B. G.
1984. Emycin: A knowledge engineer’s tool for construct-
ing rule-based expert systems. In Rule-based expert systems.
Addison-Wesley.

122 law test suites for semantically-safe rule interchange

On Stochastic Belief Revision and Update and their Combination

Gavin Rens
Centre for Artificial Intelligence Research,

University of KwaZulu-Natal, School of Mathematics, Statistics and Computer Science and
CSIR Meraka, South Africa

Email: gavinrens@gmail.com

Abstract

I propose a framework for an agent to change its proba-
bilistic beliefs when a new piece of propositional infor-
mation α is observed. Traditionally, belief change oc-
curs by either a revision process or by an update pro-
cess, depending on whether the agent is informed with
α in a static world or, respectively, whether α is a ‘sig-
nal’ from the environment due to an event occurring.
Boutilier suggested a unified model of qualitative belief
change, which “combines aspects of revision and up-
date, providing a more realistic characterization of be-
lief change.” In this paper, I propose a unified model
of quantitative belief change, where an agent’s beliefs
are represented as a probability distribution over possi-
ble worlds. As does Boutilier, I take a dynamical sys-
tems perspective. The proposed approach is evaluated
against several rationality postulated, and some proper-
ties of the approach are worked out.

Information acquired can be due to evolution of the world
or revelation about the world. That is, one may notice via
some ‘signal’ generated by the changing environment that
the environment has changed, or, one may be informed by
an independent agent in a static environment that some ‘fact’
holds.

In the present work, I deal with belief change of agents
who handle uncertainty by maintaining a probability distri-
bution over possible situations. The agents in this framework
also have models for nondeterministic events, and noisy ob-
servations. Noisy observation models can model imperfect
sensory equipment for receiving environmental signals, but
they can also model untrustworthy informants in a static
world.

In this paper, I provide the work of Boutilier (1998) as
background, because it has several connections with and was
the seed for the present work. However, I do not intend sim-
ply to give a probabilistic version of his Generalized Update
Semantics. Whereas Boutilier (1998) presents a model for
unifying qualitative belief revision and update, I build on his
work to present a unified model of belief revision and update
in a stochastic (probabilistic) setting. I also take a dynami-
cal systems perspective, like him. Due to my quantitative
approach, an agent can maintain a probability distribution

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

over the worlds it believes possible, using an expectation se-
mantics of change. This is in contrast to Boutilier’s “gener-
alized update” approach, which takes a most-plausible event
and most-plausible world approach. Finally, my proposal re-
quires a trade-off factor to mix the changes in probability
distribution over possible worlds brought about due to the
probabilistic belief revision process and, respectively, the
probabilistic belief update process. Boutilier’s model has re-
vision and update more tightly coupled. For this reason, his
approach is better called “unified” while mine is called “hy-
brid”.

The belief change community does not study probabilistic
belief update; it is studied almost exclusively in frameworks
employing Bayesian conditioning – for modeling events
and actions in dynamical domains (e.g., DBNs, MDPs,
POMDPs) (Koller and Friedman, 2009; Poole and Mack-
worth, 2010, e.g.). The part of my approach responsible for
updating stays within the Bayesian framework, but com-
bines the essential elements of belief update with unobserv-
able events and belief update as partially observable Markov
decision process (POMDP) state estimation.

On the other hand, there is plenty of literature on proba-
bilistic belief revision (Voorbraak, 1999; Grove and Halpern,
1998; Kern-Isberner, 2008; Yue and Liu, 2008, e.g.). The
subject is both deep and broad. There is no one accepted ap-
proach and to argue which is the best is not the focus of this
paper. I shall choose one reasonable method for probabilistic
belief revision suitable to the task at hand.

In the first section, Boutilier’s ‘generalized update’ is
reviewed. Then, in the next section, I introduce stochas-
tic update and stochastic revision, culminating in the ‘hy-
brid stochastic belief change’ (HSBC) approach. The final
section presents an example inspired by Boutilier’s article
(1998) and analyses the results.

Some proofs of propositions are omitted to save space;
they are available on request.

Boutilier’s Generalized Update
I use Boutilier’s notation and descriptions, except that I am
more comfortable with α and β to represent sentences, in-
stead of A and B. It is assumed that an agent has a deduc-
tively closed belief set K, a set of sentences drawn from
some logical language reflecting the agent’s beliefs about the
current state of the world. For ease of presentation, I assume

123

a logically finite, classical propositional language, denoted
L (LCPL in Boutilier (1998)), and consequence operation
Cn . The belief set K will often be generated by some finite
knowledge base KB (i.e., K = Cn(KB)). The identically
true and false propositions are denoted > and ⊥, respec-
tively. Given a set of possible worlds W (or valuations over
L) and α ∈ L, the set of α-worlds, that is, the elements of
W satisfying α, is denoted by ||α||. The worlds satisfying
all sentences in a set K is denoted ||K||.

Update
Given a belief set K, an agent will often observe a change
in the world α, requiring the agent to change K. This is the
update of K by α, denoted K�α.

“||KB || represents the set of possibilities we are prepared
to accept as the actual state of affairs. Since observation α
is the result of some change in the actual world, we ought to
consider, for each possibilityw ∈ ||KB ||, the most plausible
way (or ways) in which w might have changed in order to
make α true. That is, we want to consider the most plausible
evolution of world w into a world satisfying the observation
α. To capture this intuition, Katsuno and Mendelzon (1991)
propose a family of preorders {≤w| w ∈ W}, where each
≤w is a reflexive, transitive relation over W . We interpret
each such relation as follows: if u ≤w v then u is at least as
plausible a change relative to w as is v; that is, situation w
would more readily evolve into u than it would into v.

Finally, a faithfulness condition is imposed: for every
world w, the preorder ≤w has w as a minimum element;
that is, w <w v for all v 6= w. Naturally, the most plausi-
ble candidate changes in w that result in α are those worlds
v satisfying α that are minimal in the relation ≤w. The set
of such minimal α-worlds for each relation ≤w, and each
w ∈ ||KB ||, intuitively capture the situations we ought to
accept as possible when updating KB with α,” (Boutilier,
1998, p. 9). In other words,

||KB � α|| =
⋃

w∈||KB||
{Min(α,≤w)},

where Min(α,≤w) specifies the minimal α-worlds with re-
spect to the preorder ≤w. Then K�α = Cn(KB � α), where
K is the belief set associated with KB .

Revision
Given a belief set K, an agent will often obtain information
α in a static world, which must be incorporated into K. This
is the revision of K by α, denoted K∗α.

The AGM theory of belief revision (Alchourrón,
Gärdenfors, and Makinson, 1985) provides a set of guide-
lines, in the form of the postulates, governing the pro-
cess. “Unfortunately, while the postulates constrain possi-
ble revisions, they do not dictate the precise beliefs that
should be retracted when α is observed. An alternative
model of revision, based on the notion of epistemic en-
trenchment (Gärdenfors, 1988), has a more constructive na-
ture,” (Boutilier, 1998, p. 6).

“Semantically, an entrenchment relation (hence a revi-
sion function) can be modeled using an ordering on possi-
ble worlds reflecting their relative plausibility (Grove, 1988;

Boutilier, 1994). However, rather than use a qualitative rank-
ing relation, we adopt the presentation of (Spohn, 1988;
Goldszmidt and Pearl, 1992) and rank all possible worlds us-
ing a κ-ranking. Such a ranking κ : W → N assigns to each
world a natural number reflecting its plausibility or degree
of believability. If κ(w) < κ(v) then w is more plausible
than v or more consistent with the agent’s beliefs. We insist
that κ−1(0) 6= ∅, so that maximally plausible worlds are as-
signed rank 0. These maximally plausible worlds are exactly
those consistent with the agent’s beliefs; that is, the epis-
temically possible worlds according to K are those deemed
most plausible in κ (see Spohn (1988) for further details).
We sometimes assume κ is a partial function, and loosely
write κ(w) = ∞ to mean κ(w) is not defined (i.e., w is not
in the domain of κ, or w is impossible),” (Boutilier, 1998,
p. 6).

A κ-ranking captures the entrenchment of the agent’s be-
liefs in its belief set K. This entrenchment determines how
K will be revised when the agent receives new information
/ makes an observation α. κ induces a belief set as follows.

K = {α ∈ L | κ−1(0) ⊆ ||α||}.
Due to the ranking or entrenchment of knowledge provided
by κ, κ is considered an epistemic state.

“In other words, the set of most plausible worlds (those
such that κ(w) = 0) determine the agent’s beliefs. The rank-
ing κ also induces a revision function: to revise by α an
agent adopts the most plausible α-worlds as epistemically
possible,” (Boutilier, 1998, p. 6).

Let Wi = {w ∈ W | κ(w) = i}. And let Min(α, κ) be
the setWi with the least i such that for allwi ∈Wi,wi |= α.
Then

K∗α := {β ∈ L | Min(α, κ) ⊆ ||β||}.
In words, the belief set revised by α contains all those sen-
tences entailed by the set of worlds with the same rank,
where that rank is the least such that they are all α-worlds.

Generalized Update
As explained in the introduction, my intention with this pa-
per is not to give a probabilistic version of the Generalized
Update approach (Boutilier, 1998). For completeness, how-
ever, I sketch the approach here covering the approach in de-
tail would take up unnecessary space without lending much
insight into my Hybrid Stochastic Belief Change approach.

Boutilier motivates the need for a generalized update
method which includes revision, by claiming that KM up-
date (Katsuno and Mendelzon, 1991) is insufficient. He pro-
vides the following example adopted from Moore (1990).
Suppose you want to test whether the contents of a beaker
are chemically acid or base. If it is acid, a piece of litmus pa-
per will turn red, if base, the paper will turn blue. Suppose
that the test has not yet been performed, but you believe that
the contents in the beaker are acidic. When the litmus paper
is dipped into and pulled out of the beaker, the paper turns
blue, indicating a basic compound. “Unfortunately, the KM
theory does not allow this to take place. [...] One is forced
to accept that, if the contents were acidic (in which case it
should turn red), some extraordinary change occurred (the

124 on stochastic belief revision and update and their combination

test failed, the contents of the beaker were switched, etc.).
[...] Of course, the right thing to do is simply admit that the
beaker did not, in fact, contain an acid—the agent should re-
vise its beliefs about the contents of the beaker,” (Boutilier,
1998, p. 13).

Boutilier adopts an event-based approach where a set of
events E is assumed. These events are allowed to be nonde-
terministic, and each possible outcome of an event is ranked
according to its plausibility via a κ-ranking. “As in the orig-
inal event-based semantics, we will assume each world has
an event ordering associated with it that describes the plausi-
bility of various event occurrences at that world,” (Boutilier,
1998, p. 14).

A generalized update model is then defined as
〈W,κ,E, µ〉, where W is a set of worlds (the agent’s epis-
temic state), κ is a ranking overW ,E is a set of events (map-
pings overW), and µ is an event ordering (a set of mappings
over E).

As with KM update, updates usually occur in response to
some observation, with the assumption that something oc-
curred to cause this observation. After observing α, an agent
should adjust its beliefs by considering that only the most
plausible transitions leading to α actually occurred. The set
of possible α-transitions are those transitions leading to α-
worlds. The most plausible α-transitions are those possible
α-transitions with the minimal κ-ranking. Given that α has
actually been observed, an agent should assume that one of
these transitions describes the actual course of events. The
worlds judged to be epistemically possible are those that re-
sult from the most plausible of these transitions.

Boutilier (1998) has a proposition that states that gen-
eralized belief update as described above is equivalent to
“first determining the predicted updated ranking κ� fol-
lowed by standard (AGM) revision by α with respect to
κ�,” (Boutilier, 1998, p. 16). κ� is determined by taking the
worlds in the current possible worlds ||K|| (induced from
κ) and shifting them to all possible worlds given all possi-
ble transitions given all possible events (the actual event is
unknown), taking into account the relevant plausibility rank-
ings.

Stochastic Belief Change
I now consider agents who deal with uncertainty by main-
taining a probability distribution over possible situations
(worlds) they could be in. Let a belief state b be defined as
the set {(w, p) | w ∈W,p ∈ [0, 1]}, where

∑
(w,p)∈b p = 1.

The probability of being in w is denoted b(w). That is, b is a
probability distribution over all the worlds in W . In the hy-
brid stochastic belief change (HSBC) framework, an agent
maintains a belief state, which changes as new information
is received or observed.

An agent is assumed to have a model of how the world
works.

Definition 1. The stochastic belief change modelM has the
form 〈W, ε, T,E,O, os〉, where

• W is a set of possible worlds,
• ε is a set of events,

• T : (W × ε ×W) → [0, 1] is a transition function such
that for every e ∈ ε and w ∈ W ,

∑
w′∈W T (w, e, w′) =

1 (T (w, e, w′) models the probability of a transition to
world w′, given the occurrence of event e in world w),

• E is the event likelihood function (E(e, w) = P (e | w),
the probability of the occurrence of event e in w),

• O : (L×W)→ [0, 1] is an observation function such that
for every world w,

∑
α∈ΩO(α,w) = 1 (O(α,w) models

the probability of observing α in w), where Ω ⊂ L is the
set of possible observations, up to equivalence, and where
if α ≡ β, then O(α,w) = O(β,w), for all worlds w.1

• os : (Ω × W) → [0, 1] (os(α,w) is the agent’s ontic
strength for α perceived in w.)

Definition 2. b(α) :=
∑
w∈W,w|=α b(w).

Let b◦α := b ◦ α so that we can write b◦α(w), where ◦ is
any update or revision operator.

Often, in the exposition of this paper, a world will be re-
ferred to by its truth vector. For instance, if the vocabulary is
{q, r} and w3 |= ¬q ∧ r, then w3 may be referred to as 01.

For parsimony, let b = 〈p1, . . . , pn〉 be the proba-
bilities that belief state b assigns to w1, . . . , wn where
〈w1, w2, w3, w4〉 = 〈11, 10, 01, 00〉, and 〈w1, w2, . . . , w8〉
= 〈111, 110, . . . , 000〉.

Update
Transitions associated with the observation of α from a
world w in the current belief state bcur to a world w′ could
be caused by different events. According to Boutilier (1998),
update can be defined as

beventnew :=
{

(w′, p′) | w′ ∈W,p′ =
∑

w∈W

∑

e∈ε
T (w, e, w′)E(e, w)bcur (w)

}
.

Because the actual event is unobservable/hidden, p′ is the
expected probability of reaching w′, given the event proba-
bilities.

In partially observable Markov decision process
(POMDP) theory (Aström, 1965; Monahan, 1982; Lovejoy,
1991), events are actions chosen by the agent (and thus
observable) and observations are hidden. Then, given
current belief state bcur , selected action a and observation
o, the state estimation function is defined by

bpomdp
new :=

{
(w′, p′) | w′ ∈W,p′ =

O(o, a, w′)
∑
w∈W T (w, a,w′)bcur (w)

P (o | a, bcur)

}
,

where Ω is a set of observation objects and O : (Ω × A ×
W) → [0, 1] is an observation function, such that for every
a and w′,

∑
o∈ΩO(o, a, w′) = 1. O(o, a, w′) models the

probability of perceiving o in arrival world w′, given the ex-
ecution of some action a ∈ A. Note that P (o | a, bcur) is a
normalizing constant.

1≡ denotes logical equivalence.

125

But what is the probabilistic update, given new informa-
tion/evidence α? I suggest that α is the (overt) ‘signal’ gen-
erated by the (covert) event. An important question is, When
is α received – in the current/departure world (wc) or in the
new/arrival world (wn)? Although it is not clear to me, in
POMDP theory, observations are always assumed to be re-
ceived in the arrival world – I shall assume the same.

In the present framework, actions are not selected by the
agent, but by nature. In other words, actions are considered
to be events occurring in the environment, uncontrollable by
the agent. Further, at the present stage of research, I shall
assume that the agent has a less detailed observation model,
that is, an agent only knows O(α,wn), the probability of
perceiving α in arrival world wn (defined in Def. 1). Hence,
I propose to weight beventnew (w′) by O(α,wn) when receiv-
ing new information α and one knows that one’s belief state
should be updated (due to an evolving world). Then we can
define

Definition 3.

b � α :=
{

(w′, p′) | w′ ∈W,p′ =

1

γ
O(α,w′)

∑

w∈W

∑

e∈ε
T (w, e, w′)E(e, w)b(w)

}
,

where γ is a normalizing factor.

As far as I know, no-one has proposed rationality pos-
tulates for probabilistic update. The reason is likely due to
probabilistic update being defined in terms of standard prob-
ability theory. The axioms of probability theory have been
argued to be rational for several decades (although it is not
without its detractors).

The following basic postulates for my probabilistic belief
update are proposed. (Unless stated otherwise, it is assumed
that α is logically satisfiable, i.e., ` ¬α is false.)

(P �1) b�α is a belief state iff not ` ¬α
(P �2) b�α(α) = 1

(P �3) If α ≡ β, then b�α = b�β

Proposition 1. If b�α(α) > 0, it is not necessary that
b�α(α) = 1.

Proof. Let the vocabulary be {q, r}. Let b =
〈0.4, 0, 0.1, 0.5〉. Let there be only one event e. Let
the transition function be specified as T (11, e, 11) = 0.5,
T (11, e, 10) = 0.5, T (10, e, 01) = 1, T (01, e, 00) = 1,
T (00, e, 11) = 1. Let E(e, w) = 1 for all w ∈ W . Let
the evidence be q. Let O(q, 11) = 0.2, O(q, 10) = 0,
O(q, 01) = 0, O(q, 00) = 0.3. Then applying oper-
ation � to b produces b�q = 〈0.82, 0, 0, 0.18〉. Hence,
b�q(q) = 0.82 6= 1.

Although the following proposition is mostly negative,
the reader will soon see that constraining the stochastic be-
lief change model to be ‘rational’, the negative postulates
become positive.

Proposition 2. Postulate (P �3) holds, while (P �1) and
(P �2) do not hold.

Definition 4. We say event e is event-rational when for all
w ∈ W : there exists a w′ such that T (w, e, w′) > 0 iff
E(e, w) > 0.
Definition 5. We say α is an e-signal when for all w′ ∈W :
there exists a w such that T (w, e, w′) > 0 iff O(α,w′) > 0.
Definition 6. We say a model M is observation-rational iff
for all α, whenever ` ¬α, O(α,w) = 0 for all w ∈W .

The proposition below says that if one is rational w.r.t. ob-
servations and w.r.t. some event, and α is a signal produced
by that event, then updating on α is defined.
Proposition 3. If M is observation-rational, there exists an
event e ∈ ε which is event-rational and α is an e-signal,
then b�α is a belief state iff not ` ¬α (i.e., then (P �1) holds).

(P �2) does not hold under the antecedents of Proposi-
tion 3. Another definition is required as qualification:
Definition 7. We say evidence α is trustworthy iff for all
w ∈W , if w 6|= α, then O(α,w) = 0.

The proposition below says that if α is trustworthy, one is
rational w.r.t. some event, and α is a signal produced by that
event, then one should accept α in the updated belief state.
Proposition 4. If α is trustworthy, there exists an event e ∈
ε which is event-rational and α is an e-signal, then b�α(α) =
1 (i.e., then (P �2) holds).

Proof. Not ` ¬α is assumed by default. Recall that
b�α(α) =

∑
w∈W,w|=α b

�
α(w). Referring to the (⇐) part of

the proof of Proposition 3, b�α(α) is a belief state and thus∑
w∈W b�α(w) = 1. Hence, for b�α(α) to be less than 1, there

must exist a w′ ∈ W s.t. w′ 6|= α and b�α(w′) > 0. But then
O(α,w′) > 0. Therefore, for (P �2) not to hold, an agent
needs to believe thatO(α,w′) > 0 for some world w′ where
w′ 6|= α. But then α cannot be trustworthy (i.e., then (P �2)
holds.

Definition 8 (Gärdenfors, 1988). A probabilistic belief
change operation ◦ is said to be preservative iff for all belief
states P and for all propositions α and β, if P (α) > 0 and
P (β) = 1, then P ◦α(β) = 1.
Proposition 5. Operation � is not preservative.
Definition 9. We say evidence α is β-trustworthy if for all
w ∈W , if w 6|= β, then O(α,w) = 0.
Proposition 6. If b�α(β) is a belief state, b(β) = 1 and α is
β-trustworthy, then b�α(β) = 1.

Proof.
∑
w∈W b�α(w) = 1. Hence, for b�α(β) to be < 1,

there must exist a w× ∈ W s.t. w× 6|= β and b�α(w×) > 0.
And because b(β) = 1, b(w×) = 0. So some probability
mass must have been shifted from some β-world to the non-
β-world w×.

By definition, b�α(w×) = 1
γ O(α,w×)∑

w∈W
∑
e∈ε T (w, e, w×)E(e, w)b(w). So for b�α(w×) to

be > 0, O(α,w×) must be > 0.
However, because α is β-trustworthy, O(α,w×) = 0.

Hence, O(α,w×) 6> 0 and b�α(β) 6< 1.

Proposition 7. b�α∧β 6= (b�α)�β .

126 on stochastic belief revision and update and their combination

Proof. For instance, consider the example used in the proof
of Proposition 1. Let α be q and let β be q ∧ r. Note that
α∧β is then logically equivalent to q∧r. LetO(q∧r, 11) =
O(q ∧ r, 10) = 0.5 and O(q ∧ r, 01) = O(q ∧ r, 00) = 0.

We know that b�q = 〈0.82, 0, 0, 0.18〉. Then (b�q)
�
q∧r =

〈1, 0, 0, 0〉. On the other hand, b�q∧r = 〈0.875, 0, 0, 0.125〉.

Revision
Using Bayes’ Rule2 , P (wn | α) can be determined:

P (w | α) :=
O(α,w)b(w)∑

w′∈W O(α,w′)b(w′)
.

Note that if O(α,w) = 0, then P (w | α) = 0.
It is not yet universally agreed what revision means in a

probabilistic setting. In classical belief change, it is under-
stood that if the new information α is consistent with the
agent’s current beliefs KB , then revision is equivalent to be-
lief expansion (denoted +), where expansion is the logical
consequences of KB ∪ {α}. It is mostly agreed upon that
Bayesian conditioning corresponds to classical belief expan-
sion. This is evidenced by Bayesian conditioning (BC) being
defined only when b(α) 6= 0. In other words, one could de-
fine revision to be

b BC α := {(w, p) | w ∈W,p = P (w | α)},
as long as P (α) 6= 0.3

To accommodate cases where b(α) 6= 0, that is, where α
contradicts the agent’s current beliefs and its beliefs need to
be revised in the stronger sense, we shall make use of imag-
ing. Imaging was introduced by Lewis (1976) as a means of
revising a probability function. It has also been discussed
in the work of, for instance, Gärdenfors (1988); Dubois
and Prade (1993); Chhogyal et al. (2014); Rens and Meyer
(2015). The following version of imaging must not be re-
garded as a fundamental part of the larger belief change
framework presented here; it should be regarded as a place-
holder or suggestion for the ‘revision-module’ of the frame-
work. Informally, Lewis’s original solution for accommo-
dating contradicting evidence α is to move the probability
of each world to its closest, α-world. Lewis made the strong
assumption that every world has a unique closest α-world.
More general versions of imaging allow worlds to have sev-
eral, equally proximate, closest worlds.

Gärdenfors (1988) calls one of his generalizations of
Lewis’s imaging general imaging. Our method is also a gen-
eralization. We thus refer to his as Gärdenfors’s general
imaging and to our method as generalized imaging to dis-
tinguish them. It should be noted that these imaging meth-
ods are general revision methods and can be used in place
of Bayesian conditioning for expansion. “Thus imaging is a
more general method of describing belief changes than con-
ditionalization,” (Gärdenfors, 1988, p. 112).

2Bayes’ Rule states (in the notation of this paper) that P (w |
α) = P (α | w)P (w)/P (α) or P (w | α) = P (α |
w)P (w)/

∑
w′∈W P (α | w′)P (w′).

3Note that in my notation, b(α) is equivalent to P (α).

Let Min(α,w, d) be the set of α-worlds closest to w mea-
sured with d. Formally,

Min(α,w, d) :=

{w′ ∈ ||α|| | ∀w′′ ∈ ||α||, d(w′, w) ≤ d(w′′, w)},
where d(·) is some acceptable measure of distance between
worlds (e.g., Hamming or Dalal distance). It must also obey
the faithfulness condition that for every world w, d(w,w) <
d(v, w) for all v 6= w.
Example 1. Let the vocabulary be {q, r, s}. Let α be (q ∧
r) ∨ (q ∧ ¬r ∧ s). Suppose d is Hamming distance. Then

Min((q ∧ r) ∨ (q ∧ ¬r ∧ s), 111, d) = {111}
Min((q ∧ r) ∨ (q ∧ ¬r ∧ s), 110, d) = {110}
Min((q ∧ r) ∨ (q ∧ ¬r ∧ s), 101, d) = {101}
Min((q ∧ r) ∨ (q ∧ ¬r ∧ s), 100, d) = {110, 101}
Min((q ∧ r) ∨ (q ∧ ¬r ∧ s), 011, d) = {111}
Min((q ∧ r) ∨ (q ∧ ¬r ∧ s), 010, d) = {110}
Min((q ∧ r) ∨ (q ∧ ¬r ∧ s), 001, d) = {101}
Min((q ∧ r) ∨ (q ∧ ¬r ∧ s), 000, d) = {110, 101}

Then generalized imaging (denoted GI) is defined as
Definition 10.

b GI α :=
{

(w, p) | w ∈W,p = 0 if w 6∈ ||α||,
else p =

∑

w′∈W
w∈Min(α,w′,d)

b(w′)/|Min(α,w′, d)|
}
.

Example 2. Continuing on Example 1: Let b =
〈0, 0.1, 0, 0.2, 0, 0.3, 0, 0.4〉.

(q ∧ r) ∨ (q ∧ ¬r ∧ s) is abbreviated as α.
bGIα (111) =

∑
w′∈W

111∈Min(α,w′,d)

b(w′)/|Min(α,w′, d)|

= b(111)/|Min(α, 111, d)| + b(011)/|Min(α, 011, d)| =
0/1 + 0/1 = 0.
bGIα (110) =

∑
w′∈W

110∈Min(α,w′,d)

b(w′)/|Min(α,w′, d)|

= b(110)/|Min(α, 110, d)| + b(100)/|Min(α, 100, d)| +
b(010)/|Min(α, 010, d)| + b(000)/|Min(α, 000, d)| =
0.1/1 + 0.2/2 + 0.3/1 + 0.4/2 = 0.7.
bGIα (101) =

∑
w′∈W

101∈Min(α,w′,d)

b(w′)/|Min(α,w′, d)|

= b(101)/|Min(α, 101, d)| + b(100)/|Min(α, 100, d)| +
b(001)/|Min(α, 001, d)| + b(000)/|Min(α, 000, d)| =
0/1 + 0.2/2 + 0/1 + 0.4/2 = 0.3.

And bGIα (100) = bGIα (011) = bGIα (010) = bGIα (001) =
bGIα (000) = 0.

Notice how the probability mass of non-α-worlds is
shifted to their closest α-worlds. If a non-α-world w× with
probability p has n closest α-worlds (equally distant), then
each of these closest α-worlds gets p/n mass from w×.

Recall that in the proposed framework, agents have ac-
cess to an observation model (formalized via an observa-
tion function O(·, ·)). Given enough computational power
and time, it would be irrational for an agent to ignore its ob-
servation model when revising its beliefs. Another proposed

127

definition for a stochastic belief revision operation based on
imaging (denoted OGI) is thus
Definition 11.

b OGI α :=
{

(w, p) | w ∈W,p =
O(α,w)bGIα (w)∑

w′∈W O(α,w′)bGIα (w′)

}
,

where the denominator is a normalizing factor.
b OGI α is not defined as{

(w, p) | w ∈W,p = 0 if w 6∈ ||α||,

else p =
∑

w′∈W
w∈Min(α,w′,d)

O(α,w′)b(w′)/|Min(α,w′, d)|
}
,

because α is assumed perceived in the new world w, not the
old world w′.

Note that if P (· | α) were used instead of O(α, ·), then
OGI would be undefined whenever b(α) = 0. But this is
exactly the problem we want to avoid by using imaging. An-
other justification to rather use O(α,w) is that its value is
positively correlated with P (w | α): If O(α,w) = 0, then
P (w | α) = 0. If P (w | α) = 1, then O(α,w) is maximal
in b in the following sense: for all w′ ∈ W , if w′ 6= w, then
either b(w′) = 0 or O(α,w′) = 0, whereas b(w) > 0 and
O(α,w) > 0.

Note that the denominator my be zero, making OGI un-
defined in that case. I shall deal with this issue a little bit
later.
Example 3. Recall from Example 2 that bGIα =
〈0, 0.7, 0.3, 0, 0, 0, 0, 0〉 and α is (q ∧ r) ∨ (q ∧ ¬r ∧ s). Let
O(α,w) = 0.3, say, for all w ∈ W . Then bOGI

α = bGIα . Obvi-
ously, if the observation model carries no information with
respect to α, then it has no influence on the agent’s revised
beliefs.

Now let O(α,w) = 0.3 if w |= r, else O(α,w) =
0.2. Then bOGI

α = 〈0.3 × 0/0.23, 0.2 × 0.7/0.23, 0.3 ×
0.3/0.23, 0.2 × 0/0.23, 0.3 × 0/0.23, 0.2 × 0/0.23, 0.3 ×
0/0.23, 0.2 × 0/0.23〉 = 〈0, 0.61, 0.39, 0, 0, 0, 0, 0〉. If the
agent has an observation model telling it that α is more
likely to be perceived in r-worlds than in ¬r-worlds, then
when it receives α, the agent should be biased to believing
that it is actually in an r-world. However, the agent was cer-
tain that it was in a ¬r-world when its belief state was b.
GI thus pushes the agent to favour the α-worlds being ¬r-
worlds. Hence, in this example there is tension between be-
ing in a ¬r-world (due to previous beliefs) and being in an
r-world (due to the observation model).
Definition 12.

b BCI α :=

{
b BC α if b(α) > 0
b OGI α if b(α) = 0

I denote the expansion of belief state b on α as b+α (resp.,
probability function P on α as P+

α) and delay its definition
till later. P⊥ is conventionally defined to be the absurd prob-
ability function which is defined to be P⊥(δ) = 1 for all
δ ∈ L.

Gärdenfors (1988) proposed six rationality postulates for
probabilistic belief revision. (Unless stated otherwise, it is
assumed that α is logically satisfiable, i.e., ` ¬α is false.)

1. P ∗α is a probability function
2. P ∗α(α) = 1

3. If α ≡ β, then P ∗α = P ∗β
4. P ∗α 6= P⊥ iff not ` ¬α
5. If P (α) > 0, then P ∗α = P+

α

6. If P ∗α(β) > 0, then P ∗α∧β = (P ∗α)+
β .

Instead of saying that the result of an operation is P⊥, I
simply say that the result is undefined. And by noting that
the result of an operation is not a belief state if it is un-
defined, one can merge postulates 1 and 4. The stochastic
belief revision postulates in my notation are thus

(P ∗1) b∗α is a belief state iff not ` ¬α
(P ∗2) b∗α(α) = 1

(P ∗3) If α ≡ β, then b∗α = b∗β
(P ∗4) If b(α) > 0, then b∗α = b+α
(P ∗5) If b∗α(β) > 0, then b∗α∧β = (b∗α)+

β .

I now test OGI and BCI against each of the five postulates.
Recall that if the denominator in the definition of OGI

is zero, it is undefined. To guarantee that OGI is defined,∑
w′∈W O(α,w′)bGIα (w′) must be non-zero, that is, there

must be at least one w′ ∈ W for which O(α,w′)bGIα (w′) >
0. We know that when w′ 6∈ ||α||, O(α,w′)bGIα (w′) =
bGIα (w′) = 0.
Definition 13. We say α is weakly observable iff there exists
a w ∈ W such that w |= α and O(α,w) > 0. We say α is
strongly observable iff for all w ∈ W for which w |= α,
O(α,w) > 0.
Proposition 8. When ∗ is OGI, postulate (P ∗1), in general,
does not hold, but does hold if evidence α is strongly observ-
able.

Proof. Firstly, observe that b(w′) =∑
|Min(α,w′,d)| b(w

′)/|Min(α,w′, d)|. Therefore,

1 =
∑

w′∈w
b(w′)

=
∑

w′∈w

∑

|Min(α,w′,d)|
b(w′)/|Min(α,w′, d)|

=
∑

w′∈w,|Min(α,w′,d)|
b(w′)/|Min(α,w′, d)|

=
∑

w′∈w,w∈W,w∈Min(α,w′,d)

b(w′)/|Min(α,w′, d)|

=
∑

w∈W

∑

w′∈w,w∈Min(α,w′,d)

b(w′)/|Min(α,w′, d)|

=
∑

w∈W
bGIα (w).

Let b = 〈0, 0.1, 0, 0.2, 0, 0.3, 0, 0.4〉 and α be (q ∧ r) ∨
(q ∧ ¬r ∧ s). Let O(α, 111) = 0.9 and O(α,w) = 0 for
all w ∈ W , w 6= 111. (Notice that α is weakly observable.)
From Example 2, we know that bGIα (111) = 0, implying that
bOGI
α (111) = 0, and one can deduce that bOGI

α (w) = 0 for all
w ∈W , due to the specification of the observation model.

128 on stochastic belief revision and update and their combination

Now, let α be strongly observable: let O(α, 111) =
O(α, 110) = O(α, 101) = 0.1, else O(α, ·) = 0. Then
bOGI
α = 〈0, 0.7, 0.3, 0, 0, 0, 0, 0〉. In general, let O(α,w) > 0

for all w ∈ W for which w |= α. By definition of GI,
the probability mass of all non-α-worlds is shifted to their
closest α-worlds; the total mass (of the α-worlds) thus re-
mains 1. Hence, bGIα (α) = 1 and there exists a w′ |= α
s.t. bGIα (w′) > 0. Now, by definition of strong observability,
O(α,w′) > 0. Therefore, O(α,w′)bGIα (w′) > 0. And due to
the normalizing effect of the denominator in the definition
of OGI, bOGI

α is a belief state.

Proposition 9. When ∗ is OGI, postulate (P ∗2), in general,
does not hold and does hold when α is strongly observable.

Proof. This result follows directly from an understanding of
the proof of Proposition 8.

Proposition 10. When ∗ is OGI, postulate (P ∗3) holds.

Proposition 11. Let ∗ be OGI. If + is OGI, postulate (P ∗4)
holds, otherwise it does not.

Assuming (P ∗4) holds, I consider whether (P ∗5) holds
only for two combinations of instantiations of ∗ and +.

Proposition 12. When ∗ is OGI and + is OGI, postulate
(P ∗5) does not hold.

Proof. An instance is provided where bOGI
α (β) > 0 and

bOGI
α∧β 6= (bOGI

α)OGI
β .

Continuing with Example 3, where b =
〈0, 0.1, 0, 0.2, 0, 0.3, 0, 0.4〉, α is (q ∧ r) ∨ (q ∧ ¬r ∧ s)
and bOGI

α = bGIα = 〈0, 0.7, 0.3, 0, 0, 0, 0, 0〉. Let
β be q ∧ r, then bOGI

α (β) = 0.7 > 0. But
bOGI
α∧β = bOGI

β = 〈0, 1, 0, 0, 0, 0, 0, 0〉 and (bOGI
α)OGI

β =

〈0.3, 0.7, 0, 0, 0, 0, 0, 0〉.

Proposition 13. When ∗ is BCI, postulate (P ∗1) holds.

Proof. It is known that Bayesian conditioning results in a
belief state when the conditional is non-contradictory.

Proposition 14. When ∗ is BCI, postulate (P ∗2) holds.

Proof. By definition of BC, all non-α-worlds get zero prob-
ability and the probabilities of the remaining α-worlds are
magnified to sum to 1.

Proposition 15. When ∗ is BCI, postulate (P ∗3) holds.

Proposition 16. Let ∗ be BCI. If + is BC or BCI, postulate
(P ∗4) holds, otherwise it does not.

For the proof of the next proposition, a lemma is required.

Lemma 1. Let b(α) > 0. If bBCα (β) > 0, then b(α∧β) > 0.

Proof. Assume bBCα (β) > 0. Then there exists a wβ ∈ W
s.t. wβ |= β and bBCα (wβ) > 0. By definition, bBCα (w) =
b(α,w)
b(α) , implying b(α,wβ)

b(α) > 0. Hence, b(wβ) > 0 and wβ |=
α. But if wβ |= α, then wβ |= α∧ β, and due to b(wβ) > 0,
b(α ∧ β) > 0.

Proposition 17. When ∗ is BCI and + is BC, postulate
(P ∗5), in general, does not hold, but does hold when b(α) >
0.

Recall that a probabilistic belief change operation ◦ is
preservative iff for all belief states b and for all propositions
α and β, if b(α) > 0 and b(β) = 1, then b◦α(β) = 1.
Proposition 18. Operation OGI is not preservative, while
BCI is preservative.

Proof. OGI: Let the vocabulary be {q, r} and b =
〈0, 0.5, 0.5, 0〉. Let α be q and β be q ↔ ¬r. Then b(α) > 0,
b(β) = 1 and bGIα = 〈0.5, 0.5, 0, 0〉. Let O(q, w) = 1 for all
w ∈W . Then bOGI

α = 〈0.5, 0.5, 0, 0〉 and bOGI
α (β) = 0.5.4

BCI: bBCIα (β) = bBCα (β). By assuming that b(α) > 0 and
b(β) = 1, one is implicitly assuming that if w |= α s.t.
b(α) > 0, then w |= β. This in turn implies that when-
ever bBCα (w) > 0, that w |= β. The latter is due to con-
ditionalization: {w ∈ W | bBCα (w) > 0} is a subset of
{w ∈ W | w |= α, b(w) > 0}. By (P ∗2), bBCα (α) = 1.
But due to the fact that for all w ∈ W , if bBCα (w) > 0, then
w |= β, it must then be the case that bBCα (β) = 1.

Ontic and Epistemic Strength
Suppose there is a range of degrees for information being
ontic (the effect of a physical action or occurrence) or epis-
temic (purely informative). I shall assume that the higher the
information’s degree of being ontic, the lower the epistemic
status of that information. An agent has a certain sense of
the degree to which a piece of received information is due
to a physical action or event in the world. This sense may
come about due to a combination of sensor readings and rea-
soning. If the agent performs an action and a change in the
local environment matches the expected effect of the action,
it can be quite certain that the effect is ontic information. If
the agent receives the information from another agent (e.g.,
radio, through reading, a person speaking directly to the
agent), then it should be clear to the agent that the informa-
tion is epistemic and thus has a low degree of being ontic. If
the agent’s sensors show activity, but the agent knows that it
did not presently perform an action with an effect matching
its sensor readings, and if the readings do not reveal an epis-
temic source for the information, then the agent will have to
infer from the present world conditions and the information
received, or access learnt knowledge matching the present
world conditions and the information received, the degree to
which the information should be regarded as ontic. For in-
stance, a person might stop talking just after you ask him/her
to be quiet. Under particular conditions the person may stop
talking due to your request and in other conditions he/she
may have stopped talking anyway. Depending on the present
world conditions, you might assign a higher (but not defi-
nitely certainty) or lower (but not definitely zero) degree of
likelihood that the information (i.e., that the person stopped
talking) is ontic. Or suppose you have been wearing dark
glasses for one hour. You put them on due to the sky being
clear and (too) bright. When you take your glasses off, it is
not as bright as you thought it would be. So, has the ambient

4Here, d is Hamming distance.

129

brightness decreased due to changes in the weather, or does
it only seem darker when you remove your glasses, due to
some unknown physiological process? In this case, it would
be convenient to consider the brightness/darkness informa-
tion as being equally likely ontic and epistemic.

Recall from Definition 1 that os(α,w) indicates an
agent’s sense for the ontic strength of α received in w. We
say that os(α,w) = 1 when α is certainly ontic in w.
When α is certainly epistemic in w, then os(α,w) = 0.
In fact, let the epistemic strength of α in w be defined as
es(α,w) := 1− os(α,w).

Combining Update and Revision
I propose a way of trading off the probabilistic update and
probabilistic revision defined earlier, using the notion of on-
tic strength.

The hybrid stochastic change of belief state b due to new
information α with ontic strength (denoted bCα) is defined
as

Definition 14.

bC α :=
{

(w, p) | w ∈W,p =

1

γ

[
(1− os(α,w))b∗α(w) + os(α,w)b�α(w)

]}
,

where γ is a normalizing factor so that
∑
w∈W bCα (w) = 1.

Due to our assumption that α is observed in the arrival
world, not the departure world, os(·) is applied to the arrival
world.

Considering the rationality postulates presented so far for
belief update and revision, one can naturally suggest the fol-
lowing postulates for their combination.

(PC1) bCα is a belief state iff not ` ¬α
(PC2) bCα (α) = 1

(PC3) If α ≡ β, then bCα = bCβ
Proposition 19. Postulate (PC1) does not hold.

Proposition 20. Postulate (PC2) does not hold.

Proof. (PC2) does not hold because (P �2) does not hold.

Proposition 21. Postulate (PC3) holds.

Proof. (PC3) is holds because (P �3) and (P ∗3) hold.

Theorem 1. If: the agent model M is observation-rational,
α is trustworthy and strongly observable, there exists an
event e ∈ ε which is event-rational and α is an e-signal,
then (i) bCα is a belief state iff not ` ¬α (i.e., then (PC1) is
true) and (ii) bCα (α) = 1 (i.e., then (PC2) is true).

Proof. Note that by Propositions 3 and 4, (P �1) and (P �2)
hold. And recall that (P ∗1) and (P ∗2) are true when α is
strongly observable (see Props. 8, 9, 13 and 14).

(i)(PC1) Given the antecedents of this proposition, we
know by Proposition 4 that b�α is defined iff not ` ¬α. And
by (P ∗4), b∗α is defined iff not ` ¬α.

(⇒) Assume bCα is defined. So there exists a w ∈
W s.t. bCα (w) > 0, that is, 1

γ

[
(1 − os(α,w))b∗α(w) +

os(α,w)b�α(w)
]
> 0. Thus, either b∗α(w) > 0 (while

1 − os(α,w) > 0) or b�α(w) > 0 (while os(α,w) > 0) (or
both), which implies that b∗α resp. b�α is defined. Therefore,
not ` ¬α.

(⇐) Assume not ` ¬α. Then b∗α and b�α are defined. This
implied that there exists a w ∈ W s.t. either b∗α(w) > 0
or b�α(w) > 0 (or both). Hence, bCα (w) > 0 and due to
normalization in the definition of C, bCα is defined.

(ii)(PC2) bCα (α) =
∑
w∈W,w|=α b

C
α (w) =∑

w∈W,w|=α
1
γ

[
(1 − os(α,w))b∗α(w) + os(α,w)b�α(w)

]
,

where γ =
∑
w∈W

[
(1 − os(α,w))b∗α(w) +

os(α,w)b�α(w)
]
. But by (P ∗2) and (P �2), if w 6|= α, then

b∗α(w) = 0 and b�α(w) = 0. Hence, γ =
∑
w∈W,w|=α

[
(1 −

os(α,w))b∗α(w) + os(α,w)b�α(w)
]
. Therefore, bCα (α) =∑

w∈W,w|=α
(1−os(α,w))b∗α(w)+os(α,w)b�α(w)

∑
w∈W,w|=α

[
(1−os(α,w))b∗α(w)+os(α,w)b�α(w)

] =

1.

Although one cannot expect C to be preservative, due to
probabilistic update not being preservative (Prop. 5), one can
expect C to have preservative-like behaviour under particu-
lar conditions: Recall that α is defined to be β-trustworthy
if for all w ∈W , if w 6|= β, then O(α,w) = 0.

Proposition 22. If b�α(β) is a belief state, bCα (β) is a be-
lief state, b(β) = 1, α is β-trustworthy and ∗ is BCI, then
bCα (β) = 1.

Proof. By Proposition 6, b�α(β) = 1, when α is β-
trustworthy. By Proposition 18, ∗ is preservative when de-
fined as BCI. Then, for all w ∈ W , if w 6|= β, then
b�α(β) = b∗α(β) = 0. Hence, for all w ∈ W , if w 6|= β,
bCα (w) = 0. Therefore, because bCα (β) is a belief state,

bCα (β) = 1− bCα (¬β)

= 1−
∑

w∈w,w|=¬β
bCα (w)

= 1−
∑

w∈w,w 6|=β
bCα (w)

= 1− 0

= 1.

Examples and Analysis
HSBC is now analyzed via examples. The example domain
is adapted from one of the domains in the article of Boutilier
(1998) – here though, worlds are associated with probabili-
ties, not plausibility ranks. There are eight possible worlds,
depending on whether a book B is inside the house (if it is
not in the house, then it is assumed to be on the patio, adja-
cent to the lawn), whether the book is dry and whether the
lawn-grass G is dry. There are three events: rain – it rains,
sprnk – the sprinkler is on, and null – neither of these, the

130 on stochastic belief revision and update and their combination

null event.5 In Boutilier’s example, events are deterministic;
however, events in this paper are modeled to be stochastic,
to better illustrate the behaviour of the framework.

To simplify calculations and to aid the reader in under-
standing the results, in the following examples, the agent
will associate equal epistemic/ontic strength to a particu-
lar piece of information for all worlds (per example case).
I shall compute the agent’s new belief state for each of
os(α,w) ∈ {0, 0.25, 0.5, 0.75, 1} (for all w ∈ W), for the
two cases where α is ¬Dry(G) and where α is ¬Dry(G) ∧
Dry(B).

Boutilier models the agent’s current (initial) epistemic
state with the most plausible situation (rank 0) being
(¬Inside(B), Dry(B), Dry(G)) and the next plausible
situation (rank 1) being (Inside(B), Dry(B), Dry(G)).
I translate this as the agent having a belief state
where b(¬Inside(B), Dry(B), Dry(G)) = 0.67 and
b(Inside(B), Dry(B), Dry(G)) = 0.33. Observe that in
these examples, revision as OGI is equivalent to revision as
BCI, because b(¬Dry(G)) = b(¬Dry(G) ∧ Dry(B)) = 0.

The HSBC model M = 〈W, ε, T,E,O, os〉 is now speci-
fied.

Let w1, . . . , w8 refer to worlds
w1: (Inside(B), Dry(B), Dry(G))
w2: (Inside(B), Dry(B),¬Dry(G))
w3: (Inside(B),¬Dry(B), Dry(G))
w4: (Inside(B),¬Dry(B),¬Dry(G))
w5: (¬Inside(B), Dry(B), Dry(G))
w6: (¬Inside(B), Dry(B),¬Dry(G))
w7: (¬Inside(B),¬Dry(B), Dry(G))
w8: (¬Inside(B),¬Dry(B),¬Dry(G))

The events are ε = {rain, sprnk, null}.
The following probabilities are debatable; they should not

be taken too seriously but serve to illustrate the framework.

T (w1, null, w1) = 0.75 T (w5, null, w5) = 1
T (w1, null, w2) = 0.1 T (w5, null, w6) = 0
T (w1, null, w3) = 0.1 T (w5, null, w7) = 0
T (w1, null, w4) = 0.05 T (w5, null, w8) = 0

T (w1, rain, w1) = 0 T (w5, rain, w5) = 0
T (w1, rain, w2) = 0.75 T (w5, rain, w6) = 0.05
T (w1, rain, w3) = 0 T (w5, rain, w7) = 0.05
T (w1, rain, w4) = 0.25 T (w5, rain, w8) = 0.9

T (w1, sprnk, w1) = 0 T (w5, sprnk, w5) = 0
T (w1, sprnk, w2) = 0.8 T (w5, sprnk, w6) = 0.8
T (w1, sprnk, w3) = 0 T (w5, sprnk, w7) = 0.05
T (w1, sprnk, w4) = 0.2 T (w5, sprnk, w8) = 0.15

E(null, w1) = 0.06 E(null, w5) = 0.15
E(rain, w1) = 0.31 E(rain, w5) = 0.7
E(sprnk, w1) = 0.63 E(sprnk, w5) = 0.15

5I shall assume that the null event may include some unknown
events (with unknown effects).

O(¬Dry(G), w1) = 0.05 O(¬Dry(G) ∧ Dry(B), w1) = 0.5
O(¬Dry(G), w2) = 0.95 O(¬Dry(G) ∧ Dry(B), w2) = 0.8
O(¬Dry(G), w3) = 0.05 O(¬Dry(G) ∧ Dry(B), w3) = 0.1
O(¬Dry(G), w4) = 0.95 O(¬Dry(G) ∧ Dry(B), w4) = 0.05
O(¬Dry(G), w5) = 0.05 O(¬Dry(G) ∧ Dry(B), w5) = 0.6
O(¬Dry(G), w6) = 0.95 O(¬Dry(G) ∧ Dry(B), w6) = 0.98
O(¬Dry(G), w7) = 0.05 O(¬Dry(G) ∧ Dry(B), w7) = 0.2
O(¬Dry(G), w8) = 0.95 O(¬Dry(G) ∧ Dry(B), w8) = 0.15

Recall that the current belief state is b =
〈0.33, 0, 0, 0, 0.67, 0, 0, 0〉. The following is a list of
resulting belief states b′ = b C ¬Dry(G) for the specified
ontic strengths.

os(·) bC ¬Dry(G)

0.00 〈0.00, 0.33, 0.00, 0.00, 0.00, 0.67, 0.00, 0.00〉
0.25 〈0.00, 0.32, 0.00, 0.02, 0.00, 0.53, 0.00, 0.13〉
0.50 〈0.00, 0.31, 0.00, 0.04, 0.00, 0.40, 0.00, 0.25〉
0.75 〈0.00, 0.30, 0.00, 0.06, 0.00, 0.26, 0.00, 0.38〉
1.00 〈0.00, 0.28, 0.00, 0.08, 0.01, 0.12, 0.00, 0.51〉

Several behaviours can be noted: When the observation is
completely epistemic, the probabilities of the two believed
worlds are each shifted to their closest ¬Dry(G)-worlds.
The more the agent considers the information to be ontic, the
more its beliefs are spread out due to the nondeterminism of
the events. Whether the observation is considered ontic or
epistemic, the agent has a relatively strong belief (between
28% and 33%) that the book is inside and dry. However,
in cases where the book is outside, there is a considerable
shift in probability from the book being dry (w6) to it being
wet (w8), as the agent moves towards an ontic mindset. One
could perhaps argue that in an ontic mindset, the agent has
access to event/transition information so as to reason about
the causes of the book getting wet: it believes that there is a
moderate to high likelihood that the book will get wet if it is
on the patio, due to the sprinkler coming on or it starting to
rain (explaining the wet-grass evidence).

The following is a list of resulting belief states b′ = b C
¬Dry(G) ∧ Dry(B) for the specified epistemic strengths.

os(·) bC ¬Dry(G) ∧ Dry(B)

0.00 〈0.00, 0.29, 0.00, 0.00, 0.00, 0.71, 0.00, 0.00〉
0.25 〈0.00, 0.33, 0.00, 0.00, 0.03, 0.59, 0.00, 0.04〉
0.50 〈0.01, 0.37, 0.00, 0.00, 0.07, 0.47, 0.01, 0.07〉
0.75 〈0.01, 0.41, 0.00, 0.01, 0.10, 0.35, 0.01, 0.11〉
1.00 〈0.02, 0.45, 0.00, 0.01, 0.14, 0.23, 0.01, 0.15〉

When the agent considers the observation completely
epistemically, its beliefs change very similarly to when it
was only told that the grass is wet; the agent already be-
lieved that the book was dry. However, the extra information
has a significant impact on how the agent’s beliefs change
when the observation is considered ontically. The agent now
believes much less that the book is outside and wet and the
grass is wet, and with 78% (as opposed to 40% with the first
observation) that the book is dry and the grass is wet (in-
dependent of where the book is located). The reason is that
when the received information includes a dry book, transi-
tions are focused on going to dry-book worlds.

131

Conclusion
In this paper I suggested a method to arrive at a new (proba-
bilistic) belief state when the agent has mixed feelings about
whether to revise or update its beliefs, given a new piece
of information. Much attention was given to the design and
analysis of the separate update and revision operations. The
postulates and finally Theorem 1 add weight to my argument
that the hybrid stochastic belief change (HSBC) operation is
rational when the agent has a rational frame of mind.

Looking at the examples above, the way in which proba-
bilities shift among the possible worlds, given the different
ontic/epistemic strengths, seems justifiable. However, more
analysis is required here, especially when considering more
complicated specification patterns of the ontic/epistemic
strengths.

Determining os(α,w) for every foreseen α in every pos-
sible world w will be challenging for a designer. Some
deep questions are: Should the designer/agent provide the
strengths (via stored values or programmed reasoning), or
do these strengths come to the agent attached to the new
information? What is the reasoning process we go through
to determine whether information is epistemic or ontic, if at
all? In general, how does an agent know when information
is epistemic (requiring revision) or ontic (requiring update)?

References
Alchourrón, C. E.; Gärdenfors, P.; and Makinson, D. 1985.

On the logic of theory change: Partial meet contrac-
tion and revision functions. Journal of Symbolic Logic
50(2):510–530.

Aström, K. 1965. Optimal control of Markov decision pro-
cesses with incomplete state estimation. Journal of Math-
ematical Analysis and Applications 10:174–205.

Boutilier, C. 1994. Unifying default reasoning and belief
revision in a modal framework. Artificial Intelligence
68:33–85.

Boutilier, C. 1998. A unified model of qualitative belief
change: a dynamical systems perspective. Artificial Intel-
ligence 98(1–2):281–316.

Chhogyal, K.; Nayak, A.; Schwitter, R.; and Sattar, A.
2014. Proceedings of the thirteenth pacific rim interna-
tional conference on artificial intelligence (pricai 2014).
In Pham, D., and Park, S., eds., Proc. of PRICAI 2014,
volume 8862 of LNCS, 694–707. Springer-Verlag.

Dubois, D., and Prade, H. 1993. Belief revision and up-
dates in numerical formalisms: An overview, with new
results for the possibilistic framework. In Proceedings of
the 13th International Joint Conference on Artifical Intel-
ligence, volume 1 of IJCAI’93, 620–625. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.

Gärdenfors, P. 1988. Knowledge in Flux: Modeling the Dy-
namics of Epistemic States. Massachusetts/England: MIT
Press.

Goldszmidt, M., and Pearl, J. 1992. Rank-based sys-
tems: A simple approach to belief revision, belief update,

and reasoning about evidence and actions. In Proceed-
ings of the Third International Conference on Principles
of Knowledge Representation and Reasoning, 661–672.
Cambridge.

Grove, A., and Halpern, J. 1998. Updating sets of proba-
bilities. In Proceedings of the Fourteenth Conference on
Uncertainty in Artificial Intelligence, UAI’98, 173–182.
San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc.

Grove, A. 1988. Two modellings for theory change. Journal
of Philosophical Logic 17:157–170.

Katsuno, H., and Mendelzon, A. 1991. On the difference
between updating a knowledge base and revising it. In
Proceedings of the Second International Conference on
Principles of Knowledge Representation and Reasoning,
387–394.

Kern-Isberner, G. 2008. Linking iterated belief change
operations to nonmonotonic reasoning. In Proceedings
of the Eleventh International Conference on Principles
of Knowledge Representation and Reasoning, 166–176.
Menlo Park, CA: AAAI Press.

Koller, D., and Friedman, N. 2009. Probabilistic Graphical
Models: Principles and Techniques. Cambridge, MA and
London, England: The MIT Press.

Lewis, D. 1976. Probabilities of conditionals and condi-
tional probabilities. Philosophical Review 85(3):297–315.

Lovejoy, W. 1991. A survey of algorithmic methods for
partially observed Markov decision processes. Annals of
Operations Research 28:47–66.

Monahan, G. 1982. A survey of partially observable
Markov decision processes: Theory, models, and algo-
rithms. Management Science 28(1):1–16.

Moore, R. 1990. A formal theory of knowledge and action.
In Allen, J.; Hendler, J.; and Tate, A., eds., Readings in
Planning. San Mateo: Morgan-Kaufmann. 480–519.

Poole, D., and Mackworth, A. 2010. Artificial Intelligence:
Foundations of Computational Agents. New York, USA:
Cambridge University Press.

Rens, G., and Meyer, T. 2015. A new approach to proba-
bilistic belief change. In Russell, I., and Eberle, W., eds.,
Proceedings of the International Florida AI Research So-
ciety Conference (FLAIRS), 582–587. AAAI Press.

Spohn, W. 1988. Ordinal conditional functions: A dynamic
theory of epistemic states. In Harper, W., and Skyrms, B.,
eds., Causation in Decision, Belief Change, and Statistics,
volume 42 of The University of Western Ontario Series in
Philosophy of Science. Springer Netherlands. 105–134.

Voorbraak, F. 1999. Partial Probability: Theory and Appli-
cations. In Proceedings of the First International Sympo-
sium on Imprecise Probabilities and Their Applications,
360–368. url: decsai.ugr.es/ smc/isipta99/proc/073.html.

Yue, A., and Liu, W. 2008. Revising imprecise probabilistic
beliefs in the framework of probabilistic logic program-
ming. In Proceedings of the Twenty-third AAAI Conf. on
Artificial Intelligence (AAAI-08), 590–596.

132 on stochastic belief revision and update and their combination

Revising Incompletely Specified Convex Probabilistic Belief Bases

Gavin Rens
CAIR∗,

University of KwaZulu-Natal,
School of Mathematics, Statistics and Comp. Sci.

CSIR Meraka, South Africa
Email: gavinrens@gmail.com

Thomas Meyer
CAIR,

University of Cape Town,
Dept. of Comp. Sci.

CSIR Meraka, South Africa
Email: tmeyer@cs.uct.ac.za

Giovanni Casini
University of Luxembourg,

Comp. Sci. and Communication Research Unit
Luxembourg

Email: giovanni.casini@uni.lu

Abstract

We propose a method for an agent to revise its incom-
plete probabilistic beliefs when a new piece of proposi-
tional information is observed. In this work, an agent’s
beliefs are represented by a set of probabilistic formulae
– a belief base. The method involves determining a rep-
resentative set of ‘boundary’ probability distributions
consistent with the current belief base, revising each of
these probability distributions and then translating the
revised information into a new belief base. We use a
version of Lewis Imaging as the revision operation. The
correctness of the approach is proved. The expressiv-
ity of the belief bases under consideration are rather
restricted, but has some applications. We also discuss
methods of belief base revision employing the notion
of optimum entropy, and point out some of the bene-
fits and difficulties in those methods. Both the boundary
distribution method and the optimum entropy method
are reasonable, yet yield different results.

Suppose an agent represents its probabilistic knowledge
with a set of statements; every statement says something
about the probability of some features the agent is aware of.
Ideally, the agent would want to have enough information
to, at least, identify one probability distribution over all the
situations (worlds) it deems possible. However, if the agent
could not gather sufficient data or if it was not told or given
sufficient information, it would not be able to pinpoint ex-
actly one probability distribution. An agent with this sort of
ignorance, can be thought of as having beliefs compatible
with a set of distributions. Now, this agent might need to re-
vise its beliefs when new (non-probabilistic) information is
received, even though the agent’s beliefs do not characterize
a particular probability distribution over its current possible
worlds.

Several researchers argue that using a single proba-
bility distribution requires the agent to make unrealisti-
cally precise uncertainty distinctions (Grove and Halpern,
1998; Voorbraak, 1999; Yue and Liu, 2008).1 “One widely-
used approach to dealing with this has been to consider

∗Centre for Artificial Intelligence Research
Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1See also the references in these cited papers concerning criti-
cisms against traditional probability theory.

sets of probability measures as a way of modeling uncer-
tainty,” (Grove and Halpern, 1998). However, simply apply-
ing standard probabilistic conditioning to each of the mea-
sures/distributions in the set individually and then combin-
ing the results is also not recommended. The framework pre-
sented in this paper proposes two ways to go from one ‘prob-
abilistically incomplete’ belief base to another when new in-
formation is acquired.

Both belief revision methods presented, essentially follow
this process: From the original belief base, determine a rel-
atively small set of belief states / probability distributions
‘compatible’ with the belief base which is, in a sense, rep-
resentative of the belief base. (We shall use the terms belief
state, probability distribution, probability function and dis-
tribution interchangeably). Then revise every belief state in
this representative set. Finally, induce a new, revised belief
base from the revised representative set.

We shall present two approaches to determine the repre-
sentative set of belief states from the current belief base:
(i) The approach we focus on involves finding belief states
which, in a sense, are at the boundaries of the constraints im-
plied by the belief base. These ‘boundary belief states’ can
be thought of as drawing the outline of the convex space of
beliefs. This outline is then revised to form a new outline
shape, which can be translated into a new belief base. (ii)
As a possible alternative approach, the representative set is a
single belief state which can be imagined to be at the center
of the outline of the first approach. This ‘central’ belief state
is found by determining the one in the space of beliefs which
is least biased or most entropic in terms of information the-
ory (Jaynes, 1978; Cover and Thomas, 1991).

For approach (i) – where the canonical set is the set of
boundary belief states – we shall prove that the revised
canonical set characterizes the set of all belief states which
would have resulted from revising all (including interior) be-
lief states compatible with the original belief base.

The relevant background theory and notations are now in-
troduced.

We shall work with classical propositional logic. Let P
be the finite set of atomic propositional variables (atoms,
for short). Formally, a world is a unique assignment of truth
values to all the atoms in P . There are thus 2n conceivable
worlds. An agent may consider some non-empty subset W

133

of the conceivable worlds called the possible worlds. Often,
in the exposition of this paper, a world will be referred to
by its truth vector. For instance, if the vocabulary is placed
in order 〈q, r〉 and w3 ¬q ∧ r, then w3 may be referred
to as 01.2 Let L be all propositional formulae which can be
formed from P and the logical connectives ∧ and ¬, with >
abbreviating tautology and ⊥ abbreviating contradiction.

Let β be a sentence in L. [β] denotes the set of β-worlds,
that is, the elements ofW satisfying β. The worlds satisfying
all sentences in a set of sentences K are denoted by [K].

We define the probabilistic language Lprob = {(α) ./ x |
α ∈ L, ./∈ {≤,=,≥}, x ∈ [0, 1]}. Sentences with strict
inequalities (<,>) are excluded from the language for now.
Such sentences are more challenging to deal with and their
inclusion is left for future work. We propose a belief base
(BB) to be a consistent (logically satisfiable) subset ofLprob .
A BB specifies an agent’s knowledge.

The basic semantic element of an agent’s beliefs is a prob-
ability distribution or a belief state

b = {(w1, p1), (w2, p2), . . . , (wn, pn)},
where pi is the probability that wi is the actual world
in which the agent is.

∑
(w,p)∈b p = 1. We may also

use c to refer to a belief state. For parsimony, let b =
〈p1, . . . , pn〉 be the probabilities that belief state b assigns to
w1, . . . , wn where 〈w1, w2, w3, w4〉 = 〈11, 10, 01, 00〉, and
〈w1, w2, . . . , w8〉= 〈111, 110, . . . , 000〉. Let Π be the set of
all belief states over W .
b(α) abbreviates

∑
w∈W,wα b(w). b satisfies formula

(α) ./ x (denoted b (α) ./ x) iff b(α) ./ x. If B is
a set of formulae, then b satisfies B (denoted b B) iff
∀γ ∈ B, b γ. If B and B′ are sets of formulae, then B
entailsB′ (denotedB |= B′) iff for all b ∈ Π, b B′ when-
ever b B. If B |= {γ} then we simply write B |= γ. B
is logically equivalent to B′ (denoted B ≡ B′) iff B |= B′

and B′ |= B.
Instead of an agent’s beliefs being represented by a sin-

gle belief state, a BB B represents a set of belief-states: Let
ΠB := {b ∈ Π | b B}. A BB B is satisfiable (consistent)
iff ΠB 6= ∅.

The technique of Lewis imaging for the revision of belief
states, requires a notion of distance between worlds to be
defined. We use a pseudo-distance measure between worlds,
as defined by Lehmann, Magidor, and Schlechta (2001) and
adopted by Chhogyal et al. (2014).

We add a ‘faithfulness’ condition, which we feel is lack-
ing from the definition of Lehmann, Magidor, and Schlechta
(2001): without this condition, a pseudo-distance measure
would allow all worlds to have zero distance between them.
Boutilier (1998) mentions this condition, and we use his ter-
minology: “faithfulness”.
Definition 1. A pseudo-distance function d : W ×W →
Z satisfies the following four conditions: for all worlds
w,w′, w′′ ∈W ,

1. d(w,w′) ≥ 0 (Non-negativity)

2w α is read ‘w is a model for/satisfies α’.

2. d(w,w) = 0 (Identity)
3. d(w,w′) = d(w′, w) (Symmetry)
4. d(w,w′)+d(w′, w′′) ≥ d(w,w′′) (Triangular Inequality)
5. if w 6= w′, then d(w,w′) > 0 (Faithfulness)

Presently, the foundation theory, or paradigm, for study-
ing belief change operations is commonly known as AGM
theory (Alchourrón, Gärdenfors, and Makinson, 1985;
Gärdenfors, 1988). Typically, belief change (in a static
world) can be categorized as expansion, revision or contrac-
tion, and is performed on a belief set, the set of sentences K
closed under logical consequence. Expansion (denoted +)
is the logical consequences of K ∪ {α}, where α is new in-
formation and K is the current belief set. Contraction of α
is the removal of some sentences until α cannot be inferred
from K. It is the reduction of beliefs. Revision is when α is
(possibly) inconsistent with K and K is (minimally) modi-
fied so that the new K remains consistent and entails α. In
this view, when the new information is consistent with the
original beliefs, expansion and revision are equivalent.

The next section presents a generalized imaging method
for revising probabilistic belief states. Then we describe the
application of generalized imaging in our main contribution;
revising boundary belief states instead of all belief states.
The subsequent section explain another approaches of revis-
ing our belief bases, which prepares us for discussions in
the rest of the paper. The latter method finds a single rep-
resentative belief state through maximum entropy inference.
Both the boundary belief state method and the maximum en-
tropy method are reasonable, yet yield different results – a
seeming paradox is thus uncovered. Then future possible di-
rections of research are discussed. We end with a section on
the related work and the concluding section.

Generalized Imaging
It is not yet universally agreed what revision means in a
probabilistic setting. One school of thought says that prob-
abilistic expansion is equivalent to Bayesian conditioning.
This is evidenced by Bayesian conditioning (BC) being de-
fined only when b(α) 6= 0, thus making BC expansion
equivalent to BC revision. In other words, one could define
expansion (restricted revision) to be

b BC α = {(w, p) | w ∈W,p = b(w | α), b(α) 6= 0}.

To accommodate cases where b(α) = 0, that is, where α
contradicts the agent’s current beliefs and its beliefs need to
be revised in the stronger sense, we shall make use of imag-
ing. Imaging was introduced by Lewis (1976) as a means of
revising a probability function. It has also been discussed
in the work of, for instance, Gärdenfors (1988); Dubois
and Prade (1993); Chhogyal et al. (2014); Rens and Meyer
(2015). Informally, Lewis’s original solution for accommo-
dating contradicting evidence α is to move the probability
of each world to its closest, α-world. Lewis made the strong
assumption that every world has a unique closest α-world.
More general versions of imaging allows worlds to have sev-
eral, equally proximate, closest worlds.

134 revising incompletely specified convex probabilistic belief bases

Gärdenfors (1988) calls one of his generalizations of
Lewis’s imaging general imaging. Our method is also a gen-
eralization. We thus refer to his as Gärdenfors’s general
imaging and to our method as generalized imaging to dis-
tinguish them. It should be noted that all three these imag-
ing methods are general revision methods and can be used in
place of Bayesian conditioning for expansion. “Thus imag-
ing is a more general method of describing belief changes
than conditionalization,” (Gärdenfors, 1988, p. 112).

Let Min(α,w, d) be the set of α-worlds closest to w with
respect to pseudo-distance d. Formally,

Min(α,w, d) :=

{w′ ∈ [α] | ∀w′′ ∈ [α], d(w′, w) ≤ d(w′′, w)},
where d(·) is some pseudo-distance measure between
worlds (e.g., Hamming or Dalal distance).
Example 1. Let the vocabulary be {q, r, s}. Let α be (q ∧
r) ∨ (q ∧ ¬r ∧ s). Suppose d is Hamming distance. Then

Min((q ∧ r) ∨ (q ∧ ¬r ∧ s), 111, d) = {111}
Min((q ∧ r) ∨ (q ∧ ¬r ∧ s), 110, d) = {110}
Min((q ∧ r) ∨ (q ∧ ¬r ∧ s), 101, d) = {101}
Min((q ∧ r) ∨ (q ∧ ¬r ∧ s), 100, d) = {110, 101}
Min((q ∧ r) ∨ (q ∧ ¬r ∧ s), 011, d) = {111}
Min((q ∧ r) ∨ (q ∧ ¬r ∧ s), 010, d) = {110}
Min((q ∧ r) ∨ (q ∧ ¬r ∧ s), 001, d) = {101}
Min((q ∧ r) ∨ (q ∧ ¬r ∧ s), 000, d) = {110, 101}

�
Definition 2 (GI). Then generalized imaging (denoted GI) is
defined as

b GI α := {(w, p) | w ∈W,p = 0 if w 6∈ [α],

else p =
∑

w′∈W
w∈Min(α,w′,d)

b(w′)/|Min(α,w′, d)|}.

In words, b GI α is the new belief state produced by tak-
ing the generalized image of b with respect to α. Notice how
the probability mass of non-α-worlds is shifted to their clos-
est α-worlds. If a non-α-world w× with probability p has n
closest α-worlds (equally distant), then each of these closest
α-worlds gets p/n mass from w×.

We define b◦α := b ◦ α so that we can write b◦α(w), where
◦ is a revision operator.
Example 2. Continuing on Example 1: Let b =
〈0, 0.1, 0, 0.2, 0, 0.3, 0, 0.4〉.

(q ∧ r) ∨ (q ∧ ¬r ∧ s) is abbreviated as α.

bGIα (111) =
∑

w′∈W
111∈Min(α,w′,d)

b(w′)/|Min(α,w′, d)|

= b(111)/|Min(α, 111, d)| + b(011)/|Min(α, 011, d)| =
0/1 + 0/1 = 0.

bGIα (110) =
∑

w′∈W
110∈Min(α,w′,d)

b(w′)/|Min(α,w′, d)|

= b(110)/|Min(α, 110, d)| + b(100)/|Min(α, 100, d)| +

b(010)/|Min(α, 010, d)| + b(000)/|Min(α, 000, d)| =
0.1/1 + 0.2/2 + 0.3/1 + 0.4/2 = 0.7.

bGIα (101) =
∑

w′∈W
101∈Min(α,w′,d)

b(w′)/|Min(α,w′, d)|

= b(101)/|Min(α, 101, d)| + b(100)/|Min(α, 100, d)| +
b(001)/|Min(α, 001, d)| + b(000)/|Min(α, 000, d)| =
0/1 + 0.2/2 + 0/1 + 0.4/2 = 0.3.

And bGIα (100) = bGIα (011) = bGIα (010) = bGIα (001) =
bGIα (000) = 0. �

Revision via GI and boundary belief states
Perhaps the most obvious way to revise a given belief base
(BB) B is to revise every individual belief state in ΠB and
then induce a new BB from the set of revised belief states.
Formally, given observation α, first determine a new belief
state bα for every b ∈ ΠB via the defined revision operation:

ΠBα = {bα ∈ Π | bα = b GI α, b ∈ ΠB}.
If there is more than only a single belief state in ΠB , then
ΠB contains an infinite number of belief states. Then how
can one compute ΠBα? And how would one subsequently
determine Bα from ΠBα?

In the rest of this section we shall present a finite method
of determining ΠBα . What makes this method possible is the
insight that ΠB can be represented by a finite set of ‘bound-
ary’ belief states – those belief states which, in a sense, rep-
resent the limits or the convex hull of ΠB . We shall prove
that the set of revised boundary belief states defines ΠBα .
Inducing Bα from ΠBα is then relatively easy, as will be
seen.

Let W perm be every permutation on the ordering of
worlds in W . For instance, if W = {w1, w2, w3, w4},
then W perm = {〈w1, w2, w3, w4〉, 〈w1, w2, w4, w3〉,
〈w1, w3, w2, w4〉, . . ., 〈w4, w3, w2, w1〉}. Given an ordering
W# ∈ W perm , let W#(i) be the i-th element of W#; for
instance, 〈w4, w3, w2, w1〉(2) = w3. Suppose we are given
a BB B. We now define a function which, given a permuta-
tion of worlds, returns a belief state where worlds earlier in
the ordering are assigned maximal probabilities according to
the boundary values enforced by B.

Definition 3. MaxASAP(B,W#) is the b ∈ ΠB such
that for i = 1, . . . , |W |, ∀b′ ∈ ΠB , if b′ 6= b, then∑i
j=1 b(W

#(j)) ≥∑i
k=1 b

′(W#(k)).

Example 3. Suppose the vocabulary is {q, r} and B1 =
{(q) ≥ 0.6}. Then, for instance, MaxASAP(B1, 〈01,
00, 11, 10〉) = {(01, 0.4), (00, 0), (11, 0.6), (10, 0)} =
{(11, 0.6), (10, 0), (01, 0.4), (00, 0)}. �
Definition 4. We define the boundary belief states of BB B
as the set

ΠB
bnd := {b ∈ ΠB |
W# ∈W perm , b = MaxASAP(B,W#)}

Note that |ΠB
bnd | ≤ |W perm |.

135

Example 4. Suppose the vocabulary is {q, r} and B1 =
{(q) ≥ 0.6}. Then

ΠB1

bnd = {{(11, 1.0), (10, 0.0), (01, 0.0), (00, 0.0)},
{(11, 0.0), (10, 1.0), (01, 0.0), (00, 0.0)},
{(11, 0.6), (10, 0.0), (01, 0.4), (00, 0.0)},
{(11, 0.6), (10, 0.0), (01, 0.0), (00, 0.4)},
{(11, 0.0), (10, 0.6), (01, 0.4), (00, 0.0)},
{(11, 0.0), (10, 0.6), (01, 0.0), (00, 0.4)}}.

�
Next, the revision operation is applied to every belief state

in ΠB
bnd . Let (ΠB

bnd)GIα := {b′ ∈ Π | b′ = bGIα , b ∈ ΠB
bnd}.

Example 5. Suppose the vocabulary is {q, r} and B1 =
{(q) ≥ 0.6}. Let α be (q ∧ ¬r) ∨ (¬q ∧ r). Then

(ΠB1

bnd)GIα = {{(11, 0.0), (10, 0.5), (01, 0.5), (00, 0.0)},
{(11, 0.0), (10, 1.0), (01, 0.0), (00, 0.0)},
{(11, 0.0), (10, 0.3), (01, 0.7), (00, 0.0)},
{(11, 0.0), (10, 0.6), (01, 0.4), (00, 0.0)},
{(11, 0.0), (10, 0.8), (01, 0.2), (00, 0.0)}}.

(Two revision operations produce
{(11, 0), (10, 0.5), (01, 0.5), (00, 0)}.) �

To induce the new BBBαbnd from (ΠB
bnd)GIα , the following

procedure is executed. For every possible world, the pro-
cedure adds a sentence enforcing the upper (resp., lower)
probability limit of the world, with respect to all the revised
boundary belief states. Trivial limits are excepted.

For every w ∈ W , (φw) ≤ y ∈ Bα, where y =
maxb∈(ΠBbnd)GIα

b(w), except when y = 1, and (φw) ≥
y ∈ Bα, where y = minb∈(ΠBbnd)GIα

b(w), except when
y = 0.

The intention is that the procedure specifies Bα to repre-
sent the upper and lower probability envelopes of the set of
revised boundary belief states – Bα thus defines the entire
revised belief state space (cf. Theorem 1).

Example 6. Continuing Example 5, using the translation
procedure just above, we see that Bα1bnd = {(φ11) ≤ 0,
(φ10) ≥ 0.3, (φ01) ≤ 0.7, (φ00) ≤ 0.0}.

Note that if we let B′ = {((q ∧ ¬r) ∨ (¬q ∧ r)) = 1,
(q ∧ ¬r) ≥ 0.3}, then ΠB′

= ΠBα1bnd . �
Example 7. Suppose the vocabulary is {q, r} and B2 =
{(¬q ∧ ¬r) = 0.1}. Let α be ¬q. Then

ΠB2

bnd = {{(11, 0.9), (10, 0), (01, 0), (00, 0.1)},
{(11, 0), (10, 0.9), (01, 0), (00, 0.1)},
{(11, 0), (10, 0), (01, 0.9), (00, 0.1)}},

(ΠB2

bnd)GIα = {{(11, 0), (10, 0), (01, 0.9), (00, 0.1)},
{(11, 0), (10, 0), (01, 0), (00, 1)}} and

Bα2bnd = {(φ11) ≤ 0, (φ10) ≤ 0, (φ01) ≤ 0.9, (φ00) ≥
0.1}.

Note that if we letB′ = {(¬q) = 1, (¬q∧r) ≤ 0.9}, then
ΠB′

= ΠBα2bnd . �
Let WMin(α,d) be a partition of W such

that {wi1, . . . , wini} is a block in WMin(α,d) iff
|Min(α,wi1, d)| = · · · = |Min(α,wini, d)|. Denote an
element of block {wi1, . . . , wini} as wi, and the block of
which wi is an element as [wi]. Let i = |Min(α,wi, d)|,
in other words, the superscript in wi indicates the size of
Min(α,wi, d). Let m := maxw∈W |Min(α,w, d)|.
Observation 1. Let δ1, δ2, . . . , δm be positive integers such
that i < j iff δi < δj . Let ν1, ν2, . . . , νm be values in [0, 1]
such that

∑m
k=1 νk = 1. Associate with every νi a maximum

value it is allowed to take: most(νi). For every νi, we define
the assignment value

av(νi) :=

{
most(νi) if

∑i
k=1 ≤ 1

1−∑i−1
k=1 otherwise

Determine first av(ν1), then av(ν2) and so on. Then

av(ν1)

δ1
+ · · ·+ av(νm)

δm
>
ν′1
δ1

+ · · ·+ ν′m
δm

whenever ν′i 6= av(νi) for some i. �
For instance, let δ1 = 1, δ2 = 2, δ3 = 3, δ4 = 4.

Let most(ν1) = 0.5, most(ν2) = 0.3, most(ν3) = 0.2,
most(ν4) = 0.3. Then av(ν1) = 0.5, av(ν2) = 0.3,
av(ν3) = 0.2, av(ν4) = 0 and

0.5

1
+

0.3

2
+

0.2

3
+

0

4
= 0.716.

But
0.49

1
+

0.3

2
+

0.2

3
+

0.01

4
= 0.709.

And
0.5

1
+

0.29

2
+

0.2

3
+

0.01

4
= 0.714.

Lemma 1 essentially says that the belief state in ΠB which
causes a revised belief state to have a maximal value at world
w (w.r.t. all belief states in ΠB), will be in ΠB

bnd .
Lemma 1. For all w ∈ W ,
arg maxbX∈ΠB

∑
w′∈W

w∈Min(α,w′,d)

bX(w′)/|Min(α,w′, d)| is

in ΠB
bnd .

Proof. Note that
∑

w′∈W
w∈Min(α,w′,d)

b(w′)/|Min(α,w′, d)|

can be written in the form∑
w′∈[w1]

w∈Min(α,w′,d)

b(w′)

1
+ · · ·+

∑
w′∈[wm]

w∈Min(α,w′,d)

b(w′)

m
.

Observe that there must be a W# ∈ W perm such that
W# = 〈w1

1, . . . , w
1
n1, . . . , w

m
1 , . . . , w

m
nm〉. Then by the

136 revising incompletely specified convex probabilistic belief bases

definition of the set of boundary belief states (Def. 4),
MaxASAP(B,W#) will assign maximal probability mass
to [w1] = {w1

1, . . . , w
1
n1}, then to [w2] = {w2

1, . . . , w
m
n2}

and so on.
That is, by Observation 1, for some bx ∈ ΠB

bnd , bx(w) =
maxbX∈ΠB

∑
w′∈W

w∈Min(α,w′,d)

bX(w′)/|Min(α,w′, d)|
for all w ∈ W . Therefore,
arg maxbX∈ΠB

∑
w′∈W

w∈Min(α,w′,d)

bX(w′)/|Min(α,w′, d)| is

in ΠB
bnd .

Let
xw := maxb∈ΠBbnd

b(w) X
w

:= maxb∈ΠB b(w)

yw := maxb∈(ΠBbnd)GI
α
b(w) Y

w
:= maxb∈(ΠB)GI

α
b(w)

xw := minb∈ΠBbnd
b(w) Xw := minb∈ΠB b(w)

yw := minb∈(ΠBbnd)GI
α
b(w) Y w := minb∈(ΠB)GI

α
b(w)

Lemma 2 states that for every world, the upper/lower
probability of the world with respect to ΠB

bnd is equal to the
upper/lower probability of the world with respect to ΠB . The
proof requires Observation 1 and Lemma 1.

Lemma 2. For all w ∈W , yw = Y
w

and yw = Y w.

Proof. Note that if w 6∈ [α], then yw = Y
w

= 0 and yw =
Y w = 0.

We now consider the cases where w ∈ [α].

yw = Y
w

iff
max

b∈(ΠBbnd)
b(w) = max

b∈(ΠB)
b(w)

iff

max
bx∈ΠBbnd

∑

w′∈W
w∈Min(α,w′,d)

bx(w′)/|Min(α,w′, d)|

= max
bX∈ΠB

∑

w′∈W
w∈Min(α,w′,d)

bX(w′)/|Min(α,w′, d)|

if
bx(w) = bX(w), where

bx(w) := max
bx∈ΠBbnd

∑

w′∈W
w∈Min(α,w′,d)

bx(w′)/|Min(α,w′, d)|

and

bX(w) := max
bX∈ΠB

∑

w′∈W
w∈Min(α,w′,d)

bX(w′)/|Min(α,w′, d)|.

Note that
∑

w′∈W
w∈Min(α,w′,d)

b(w′)/|Min(α,w′, d)|

can be written in the form
∑

w′∈[w1]
w∈Min(α,w′,d)

b(w′)

1
+ · · ·+

∑
w′∈[wm]

w∈Min(α,w′,d)

b(w′)

m
.

Then by Observation 1, bX(w) is in ΠB
bnd . And also by

Lemma 1, the belief state in ΠB
bnd identified by bX(w) must

be the one which maximizes
∑

w′∈W
w∈Min(α,w′,d)

bx(w′)/|Min(α,w′, d)|,

where bx ∈ ΠB
bnd . That is, bx = bX .

With a symmetrical argument, it can be shown that yw =
Y w.

In intuitive language, the following theorem says that the
BB determined through the method of revising boundary be-
lief states captures exactly the same beliefs and ignorance as
the belief states in ΠB which have been revised. This corre-
spondence relies on the fact that the upper and lower prob-
ability envelopes of ΠB can be induce from ΠB

bnd , which is
what Lemma 2 states.

Theorem 1. Let (ΠB)GIα := {bGIα ∈ Π | b ∈ ΠB}. Let Bαbnd
be the BB induced from (ΠB

bnd)GIα . Then ΠBαbnd = (ΠB)GIα .

Proof. We show that ∀b′∈Π, b′∈ΠBαbnd ⇐⇒ b′∈(ΠB)GIα .
(⇒) b′ ∈ ΠBαbnd implies ∀w ∈ W , yw ≤ b′(w) ≤ yw

(by definition of Bαbnd). Lemma 2 states that for all w ∈W ,
yw = Y

w
and yw = Y w. Hence, ∀w ∈ W , Y w ≤ b′(w) ≤

Y
w

Therefore, b′(w) ∈ (ΠB)GIα .
(⇐) b′(w) ∈ (ΠB)GIα implies ∀w ∈ W , Y w ≤ b′(w) ≤

Y
w

. Hence, by Lemma 2, ∀w ∈ W , yw ≤ b′(w) ≤ yw.
Therefore, by definition of Bαbnd , b′∈ΠBαbnd .

Revising via a Representative Belief State
Another approach to the revision of a belief base (BB) is to
determine a representative of ΠB (call it brep), change the
representative belief state via the the defined revision op-
eration and then induce a new BB from the revised repre-
sentative belief state. Selecting a representative probability
function from a family of such functions is not new (Gold-
szmidt, Morris, and Pearl, 1990; Paris, 1994, e.g.). More for-
mally, given observation α, first determine brep ∈ ΠB , then
compute its revision bαrep , and finally induce Bα from bαrep .

We shall represent ΠB (and thus B) by the single ‘least
biased’ belief state, that is, the belief state in ΠB with high-
est entropy:

Definition 5 (Shannon Entropy).

H(b) := −
∑

w∈W
b(w) ln b(w),

where b is a belief state.

137

Definition 6 (Maximum Entropy). Traditionally, given
some set of distributions Π, the most entropic distribution
in Π is defined as

bH := arg max
b∈Π

H(b).

Suppose B2 = {(¬q ∧ ¬r) = 0.1}. Then the belief state
b ∈ ΠB2 satisfying the constraints posed by B2 for which
H(b) is maximized is brep = bH = 〈0.3, 0.3, 0.3, 0.1〉.

The above distribution can be found directly by applying
the principle of maximum entropy: The true belief state is
estimated to be the one consistent with known constraints,
but is otherwise as unbiased as possible, or “Given no other
knowledge, assume that everything is as random as possible.
That is, the probabilities are distributed as uniformly as pos-
sible consistent with the available information,” (Poole and
Mackworth, 2010). Obviously world 00 must be assigned
probability 0.1. And the remaining 0.9 probability mass
should be uniformly spread across the other three worlds.

Applying GI to brep on evidence ¬q results in b¬qrep = 〈0,
0, 0.6, 0.4〉.
Example 8. Suppose the vocabulary is {q, r}, B1 =
{(q) ≥ 0.6} and α is (q ∧ ¬r) ∨ (¬q ∧ r). Then brep =
arg maxb∈ΠB1 H(b) = 〈0.3, 0.3, 0.2, 0.2〉. Applying GI to
brep on α results in bαrep = 〈0, 0.61, 0.39, 0〉. bαrep can be
translated intoBα1rep as {(q∧¬r) = 0.61, (¬q∧r) = 0.39}.
�

Still using α = (q ∧ ¬r) ∨ (¬q ∧ r), notice that
ΠBα1rep 6= ΠBα1bnd . But how different areBα1rep = {(q∧¬r) =
0.61, (¬q ∧ r) = 0.39} and Bα1bnd = {(q ∧ r) ≤ 0,
(q∧¬r) ≥ 0.3, (¬q∧ r) ≤ 0.7, (¬q∧¬r) ≤ 0.0}? Perhaps
one should ask, how different Bα1rep is from the representa-
tive of Bα1bnd : The least biased belief state satisfying Bα1bnd
is 〈0, 0.5, 0.5, 0〉. That is, How different are 〈0, 0.61, 0.39, 0〉
and 〈0, 0.5, 0.5, 0〉?

In the case of B2, we could compare B¬q2bnd = {(φ11) ≤
0, (φ10) ≤ 0, (φ01) ≤ 0.9, (φ00) ≥ 0.1} with b¬qrep = 〈0, 0,
0.6, 0.4〉. Or if we take the least biased belief state satisfying
B¬q2bnd , we can compare 〈0, 0, 0.5, 0.5〉 with 〈0, 0, 0.6, 0.4〉.

It has been extensively argued (Jaynes, 1978; Shore and
Johnson, 1980; Paris and Vencovsk, 1997) that maximum
entropy is a reasonable inference mechanism, if not the most
reasonable one (w.r.t. probability constraints). And in the
sense that the boundary belief states method requires no
compression / information loss, it also seems like a very rea-
sonable inference mechanism for revising BBs as defined
here. Resolving this misalignment in the results of the two
methods is an obvious task for future research.

Future Directions
Some important aspects still missing from our framework
are the representation of conditional probabilistic informa-
tion such as is done in the work of Kern-Isberner, and the
association of information with its level of entrenchment.
On the latter point, when one talks about probabilities or
likelihoods, if one were to take a frequentist perspective, in-
formation observed more (less) often should become more

(less) entrenched. Or, without considering observation fre-
quencies, an agent could be designed to have, say, one or
two sets of deeply entrenched background knowledge (e.g.,
domain constraints) which does not change or is more im-
mune to change than ‘regular’ knowledge.

Given that we have found that the belief base result-
ing from revising via the boundary-belief-states approach
differs from the belief base resulting from revising via
the representative-belief-state approach, the question arises,
When is it appropriate to use a representative belief state de-
fined as the most entropic belief state of a given set ΠB?
This is an important question, especially due to the popular-
ity of employing the Maximum Entropy principle in cases of
undespecified probabilistic knowledge (Jaynes, 1978; Gold-
szmidt, Morris, and Pearl, 1990; Hunter, 1991; Voorbraak,
1999; Kern-Isberner, 2001; Kern-Isberner and Rdder, 2004)
and the principle’s well-behavedness (Shore and Johnson,
1980; Paris, 1994; Kern-Isberner, 1998).

Katsuno and Mendelzon (1991) modified the eight AGM
belief revision postulates (Alchourrón, Gärdenfors, and
Makinson, 1985) to the following six (written in the nota-
tion of this paper), where ∗ is some revision operator.3

• Bα∗ |= (α) = 1.
• IfB∪{(α) = 1} is satisfiable, thenBα∗ ≡ B∪{(α) = 1}.
• If (α) = 1 is satisfiable, then Bα∗ is also satisfiable.

• If α ≡ β, then Bα∗ ≡ Bβ∗ .

• Bα∗ ∪ {(β) = 1} |= Bα∧β∗ .

• If Bα∗ ∪ {(β) = 1} is satisfiable, then Bα∧β∗ |= Bα∗ ∪
{(β) = 1}.

Testing the various revision operations against these postu-
lates is left for a sequel paper.

An extended version of maximum entropy is minimum
cross-entropy (MCE) (Kullback, 1968; Csiszár, 1975):

Definition 7 (Minimum Cross-Entropy). The ‘directed di-
vergence’ of distribution c from distribution b is defined as

R(c, b) :=
∑

w∈W
c(w) ln

c(w)

b(w)
.

R(c, b) is undefined when b(w) = 0 while c(w) > 0; when
c(w) = 0, R(c, b) = 0, because limx→0 ln(x) = 0. Given
new evidence φ ∈ Lprob , the distribution c satisfying φ di-
verging least from current belief state b is

arg min
c∈Π,cφ

R(c, b).

Definition 8 (MCI). Then MCE inference (denoted (MCI))
is defined as

bMCI α := arg min
b′∈Π,b′(α)=1

R(b′, b).

In the following example, we interpret revision as MCE
inference.

3In these postulates, it is sometimes necessary to write an ob-
servation α as a BB, i.e., as {(α) = 1} – in the present framework,
observations are regarded as certain.

138 revising incompletely specified convex probabilistic belief bases

Example 9. Suppose the vocabulary is {q, r} and B1 =
{(q) ≥ 0.6}. Let α be (q ∧ ¬r) ∨ (¬q ∧ r). Then

ΠB1

bnd = {{(11, 1.0), (10, 0.0), (01, 0.0), (00, 0.0)},
{(11, 0.0), (10, 1.0), (01, 0.0), (00, 0.0)},
{(11, 0.6), (10, 0.0), (01, 0.4), (00, 0.0)},
{(11, 0.6), (10, 0.0), (01, 0.0), (00, 0.4)},
{(11, 0.0), (10, 0.6), (01, 0.4), (00, 0.0)},
{(11, 0.0), (10, 0.6), (01, 0.0), (00, 0.4)}},

(ΠB1

bnd)MCI
α = {{(11, 0), (10, 0), (01, 1), (00, 0)},

{(11, 0), (10, 1), (01, 0), (00, 0)},
{(11, 0), (10, 0.6), (01, 0.4), (00, 0)}} and

Bα1bnd = {(φ11) ≤ 0, (φ00) ≤ 0}.
Note that if we let B′ = {((q ∧ ¬r) ∨ (¬q ∧ r)) = 1},

then ΠB′
= ΠBα1bnd . �

Recall from Example 6 that B′ included (q ∧
¬r) ≥ 0.3. Hence, in this particular case, combining
the boundary belief states approach with MCI results in
a less informative revised belief base than when GI is
used. The reason for the loss of information might be
due to R(·, {(11, 1.0), (10, 0.0), (01, 0.0), (00, 0.0)}) and
R(·, {(11, 0.6), (10, 0.0), (01, 0.0), (00, 0.4)}) being unde-
fined: Recall that R(c, b) is undefined when b(w) = 0 while
c(w) > 0. But then there is no belief state c for which c α
and R(·) is defined (with these two belief states as argu-
ments). Hence, there are no revised counterparts of these two
belief states in (ΠB1

bnd)MCI
α . We would like to analyse MCI

more within this framework. In particular, in the future, we
would like to determine whether a statement like Theorem 1
holds for MCI too.

In MCE inference, b-consistency of evidence φ is defined
as: There exists a belief state c such that c φ and c is
totally continuous with respect to b (i.e., b(w) = 0 implies
c(w) = 0). MCE is undefined when the evidence is not b-
consistent. This is analogous to Bayesian conditioning be-
ing undefined for b(α) = 0. Obviously, this is a limitation
of MCE because some belief states may not be considered
as candidate revised belief states. Admittedly, we have not
searched the literature on this topic due to it being out of the
present scope.

As far as we know, imaging for belief change has never
been applied to (conditional) probabilistic evidence. Due to
issues with many revision methods required to be consistent
with prior beliefs, and imaging not having this limitation, it
might be worthwhile investigating.

The translation from the set of belief states back to a be-
lief base is a mapping from every belief state to a probabil-
ity formula. The size of the belief base is thus in the order
of |W perm |, where |W | is already exponential in the size of
P , the set of atoms. As we saw in several examples in this
paper, the new belief base often has a more concise equiva-
lent counterpart. It would be useful to find a way to consis-
tently determine more concise belief bases than our present
approach does.

The computational complexity of the process to revise a
belief base is at least exponential. This work focused on the-
oretical issues. If the framework presented here is ever used
in practice, computations will have to be optimized.

The following example illustrates how one might deal
with strict inequalities.

Example 10. Suppose the vocabulary is {q, r} and B3 =
{(q) > 0.6}. Let α be (q ∧ ¬r) ∨ (¬q ∧ r). Let ε be a real
number which tends to 0. Then ΠB3

bnd =

{{(11, 1.0), (10, 0.0), (01, 0.0), (00, 0.0)},
{(11, 0.0), (10, 1.0), (01, 0.0), (00, 0.0)},
{(11, 0.6 + ε), (10, 0.0), (01, 0.4− ε), (00, 0.0)},
{(11, 0.6 + ε), (10, 0.0), (01, 0.0), (00, 0.4− ε)},
{(11, 0.0), (10, 0.6 + ε), (01, 0.4− ε), (00, 0.0)},
{(11, 0.0), (10, 0.6 + ε), (01, 0.0), (00, 0.4− ε)}},

(ΠB3

bnd)GIα =

{{(11, 0.0), (10, 0.5), (01, 0.5), (00, 0.0)},
{(11, 0.0), (10, 1.0), (01, 0.0), (00, 0.0)},
{(11, 0.0), (10, 0.3 + ε), (01, 0.7− ε), (00, 0.0)},
{(11, 0.0), (10, 0.6 + ε), (01, 0.4− ε), (00, 0.0)},
{(11, 0.0), (10, 0.8 + ε), (01, 0.2− ε), (00, 0.0)} and

Bα3bnd = {(φ11) ≤ 0, (φ10) ≥ 0.3 + ε, (φ01) ≤ 0.7 − ε,
(φ00) ≤ 0.0}.

Note that if we let B′ = {((q ∧ ¬r) ∨ (¬q ∧ r)) = 1,
(q ∧ ¬r) > 0.3}, then ΠB′

= ΠBα3bnd . �
It has been suggested by one of the reviewers that GI could

be an affine map (i.t.o. geometry), thus allowing the proof of
Theorem 1 to refer to existing results in the study of affine
maps to significantly simplify the proof. The authors are not
familiar with affine maps and thus leave investigation of the
suggestion to other researchers.

Related Work
Voorbraak (1999) proposed the partial probability theory
(PTT), which allows probability assignments to be partially
determined, and where there is a distinction between prob-
abilistic information based on (i) hard background evidence
and (ii) some assumptions. He does not explicitly define the
“constraint language”, however, from his examples and dis-
cussions, one can infer that he has something like the lan-
guage LPTT in mind: it contains all formulae which can
be formed with sentences in our Lprob in combination with
connectives ¬,∧ and ∨. A “belief state” in PTT is defined
as the quadruple 〈Ω,B,A, C〉, where Ω is a sample space,
B ⊂ LPTT is a sets of probability constraints,A ⊂ LPTT is
a sets of assumptions and C ⊆W “represents specific infor-
mation concerning the case at hand” (an observation or evi-
dence).4 Our epistemic state can be expressed as a restricted
PTT “belief state” by letting Ω = W , B = B, A = ∅ and

4Voorbraak (1999)’s “belief state” would rather be called and
epistemic state or knowledge structure in our language.

139

C = {w ∈ W | w α}, where B is a belief base and α is
an observation in our notation.

Voorbraak (1999) mentions that he will only consider
conditioning where the evidence does not contradict the cur-
rent beliefs. He defines the set of belief states corresponding
to the conditionalized PPT “belief state” as {b(· | C) ∈ Π |
b ∈ ΠB∪A, b(C) > 0}. In our notation, this corresponds to
{(b BC α) ∈ Π | b ∈ ΠB , b(α) > 0}, where α corresponds
to C.

Voorbraak (1999) proposes constraining as an alternative
to conditioning: Let φ ∈ Lprob be a probability constraint.
In our notation, constraining ΠB on φ produces ΠB∪{φ}.

Note that expanding a belief set reduces the number of
models (worlds) and expanding a PPT ”belief state” with
extra constraints also reduces the number of models (belief
states / probability functions).

In the context of belief sets, it is possible to obtain any
belief state from the ignorant belief state by a series of
expansions. In PPT, constraining, but not conditioning,
has the analogous property. This is one of the main rea-
sons we prefer to constraining and not conditioning to
be the probabilistic version of expansion. (Voorbraak,
1999, p. 4)

But Voorbraak does not address the issue that C and φ are
different kinds of observations, so constraining, as defined
here, cannot be an alternative to conditioning. C cannot be
used directly for constraining and φ cannot be used directly
for conditioning.

W.l.o.g., we can assume C is represented by α. If we take
b GI α to be an expansion operation whenever b(α) > 0,
then one might ask, Is it possible to obtain any belief base
B′ from the ignorant belief baseB = ∅ by a series of expan-
sions, using our approach? The answer is, No. For instance,
there is no observation or series of observations which can
change B = {} into B′ = {(q) ≥ 0.6}. But if we were
to allow sentences (constraints) in Lprob to be observations,
then we could obtain any B′ from the ignorant B.

Grove and Halpern (1998) investigate what “update” (in-
corporation of an observation with current beliefs, such that
the observation does not contradict the beliefs) means in a
framework where beliefs are represented by a set of belief
states. They state that the main purpose of their paper is
to illustrate how different the set-of-distributions framework
can be, “technically”, from the standard single-distribution
framework. They propose six postulates characterizing what
properties an update function should have. They say that
some of the postulates are obvious, some arguable and one
probably too strong. Out of seven (families of) update func-
tions only the one based on conditioning (Updcond(·)) and
the one based on constraining (Updconstrain(·)) satisfy all
six postulates, where Updcond(ΠB , α) := {(b BC α) ∈ Π |
b ∈ ΠB , b(α) > 0} and where they interpret Voorbraak’s
(1999) constraining as Updconstrain(ΠB , α) := {b ∈ ΠB |
b(α) = 1}. Grove and Halpern (1998) do not investigate the
case when an observation must be incorporated while it is
(possibly) inconsistent with the old beliefs (i.e., revision).

Kern-Isberner (2001) develops a new perspective of prob-
abilistic belief change. Based on the ideas of Alchourrón,

Gärdenfors, and Makinson (1985) and Katsuno and Mendel-
zon (1991) (KM), the operations of revision and update, re-
spectively, are investigated within a probabilistic framework.
She employs as basic knowledge structure a belief base
(b,R), where b is a probability distribution (belief state) of
background knowledge and R is a set of probabilistic con-
ditionals of the form A B[x] meaning ‘The probability
of B, given A, is x. A universal inference operation – based
on the techniques of optimum entropy – is introduced as an
“adequate and powerful method to realize probabilistic be-
lief change”.

By having a belief state available in the belief base, min-
imum cross-entropy can be used. The intention is then that
an agent with belief base (b, T) should always reason w.r.t.
belief state bT := arg minc∈Π,cT R(c, b). Kern-Isberner
(2001) then defines the probabilistic belief revision of (b,R)
by evidence S as (b,R ∪ S). And the probabilistic belief
update of (b,R) by evidence S is defined as (bR,S).5 She
distinguishes between revision as a knowledge adding pro-
cess, and updating as a change-recording process. Kern-
Isberner (2001) sets up comparisons of maximum cross-
entropy belief change with AGM revision and KM update.
Cases where, for update, new information R is inconsistent
with the prior distribution b, or, for revision, is inconsistent
with b or the context R, are not dealt with (Kern-Isberner,
2001, p. 399, 400).

Having a belief state available for modification when new
evidence is to be adopted is quite convenient. As Voorbraak
(1999) argues, however, an agent’s ignorance can hardly be
represented in an epistemic state where a single belief state
must always be chosen.

The reader may also refer to a later paper (Kern-Isberner,
2008) in which many of the results of the work just reviewed
are generalized to belief bases of the form (Ψ,R), where Ψ
denotes a general epistemic state. In that paper, she consid-
ers two instantiations of Ψ, namely as a probability distribu-
tion and as an ordinal conditional function (first introduced
by Spohn (1988)).

Yue and Liu (2008) propose a probabilistic revision op-
eration for imprecise probabilistic beliefs in the framework
of Probabilistic Logic Programming (PLP). New evidence
may be a probabilistic (conditional) formula and needs not
be consistent with the original beliefs. Revision via imaging
(e.g., GI) also overcomes this consistency issue.

Essentially, their probabilistic epistemic states Ψ are in-
duced from a PLP program which is a set of formulae, each
formula having the form (ψ | φ)[l, u], meaning that the prob-
ability of the conditional (ψ | φ) lies in the interval [l, u].

The operator they propose has the characteristic that if an
epistemic state Ψ represents a single probability distribution,
revising collapses to Jeffrey’s rule and Bayesian condition-
ing.

They mention that it is required that the models (distribu-
tions) of Ψ is a convex set. There might thus be an oppor-
tunity to employ their revision operation on a representative
set of boundary distributions as proposed in this paper.

5This is a very simplified version of what she presents. Please
refer to the paper for details.

140 revising incompletely specified convex probabilistic belief bases

Conclusion
In this paper, we propose an approach how to generate a new
probabilistic belief base from an old one, given a new piece
of non-probabilistic information, where a belief base is a fi-
nite set of sentences, each sentence stating the likelihood of
a proposition about the world. In this framework, an agent’s
belief base represents the set of belief states compatible with
the sentences in it. In this sense, the agent is able to repre-
sent its knowledge and ignorance about the true state of the
world.

We used a version of the so-called imaging approach to
implement the revision operation.

Two methods were proposed: revising a finite set of
‘boundary belief states’ and revising a least biased belief
state. We focussed on the former and showed that the lat-
ter gives different results.

There were two main contribution of this paper. The first
was to prove that the set of belief states satisfying Bnew is
exactly those belief states satisfying the original belief base,
revised. The second was to uncover an interesting conflict
in the results of the two belief base revision methods. It is
worth further understanding the reasons behind such a dif-
ference, as such an investigation could give more insight
about the mechanisms behind the two methods and indicate
possible pros and cons of each.

Acknowledgements
The work of Giovanni Casini has been supported by the
Fonds National de la Recherche, Luxembourg, and cofunded
by the Marie Curie Actions of the European Commission
(FP7-COFUND) (AFR/9181001).

References
Alchourrón, C. E.; Gärdenfors, P.; and Makinson, D. 1985.

On the logic of theory change: Partial meet contrac-
tion and revision functions. Journal of Symbolic Logic
50(2):510–530.

Boutilier, C. 1998. A unified model of qualitative belief
change: a dynamical systems perspective. Artificial Intel-
ligence 98(1–2):281–316.

Chhogyal, K.; Nayak, A.; Schwitter, R.; and Sattar, A.
2014. Proceedings of the thirteenth pacific rim interna-
tional conference on artificial intelligence (pricai 2014).
In Pham, D., and Park, S., eds., Proc. of PRICAI 2014,
volume 8862 of LNCS, 694–707. Springer-Verlag.

Cover, T., and Thomas, J. 1991. Elements of Information
Theory. New York: Wiley.

Csiszár, I. 1975. I-divergence geometry of probability distri-
butions and minimization problems. Annals of Probability
3:146–158.

Dubois, D., and Prade, H. 1993. Belief revision and up-
dates in numerical formalisms: An overview, with new
results for the possibilistic framework. In Proceedings of
the 13th International Joint Conference on Artifical Intel-
ligence, volume 1 of IJCAI’93, 620–625. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.

Gärdenfors, P. 1988. Knowledge in Flux: Modeling the Dy-
namics of Epistemic States. Massachusetts/England: MIT
Press.

Goldszmidt, M.; Morris, P.; and Pearl, J. 1990. A max-
imum entropy approach to nonmonotonic reasoning. In
Proceedings of the Eighth Natl. Conf. on Artificial Intelli-
gence (AAAI-90), 646–652. AAAI Press.

Grove, A., and Halpern, J. 1998. Updating sets of proba-
bilities. In Proceedings of the Fourteenth Conference on
Uncertainty in Artificial Intelligence, UAI’98, 173–182.
San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc.

Hunter, D. 1991. Maximum entropy updating and condition-
alization. In Spohn, W.; Van Fraassen, B.; and Skyrms, B.,
eds., Existence and Explanation, volume 49 of The Uni-
versity of Western Ontario Series in Philosophy of Sci-
ence. Springer Netherlands. 45–57.

Jaynes, E. 1978. Where do we stand on maximum entropy?
In The Maximum Entropy Formalism. MIT Press. 15–118.

Katsuno, H., and Mendelzon, A. 1991. On the difference
between updating a knowledge base and revising it. In
Proceedings of the Second International Conference on
Principles of Knowledge Representation and Reasoning,
387–394.

Kern-Isberner, G., and Rdder, W. 2004. Belief revision and
information fusion on optimum entropy. International
Journal of Intelligent Systems 19(9):837–857.

Kern-Isberner, G. 1998. Characterizing the principle of min-
imum cross-entropy within a conditional-logical frame-
work. Artificial Intelligence 98(12):169 – 208.

Kern-Isberner, G. 2001. Revising and updating probabilis-
tic beliefs. In Williams, M.-A., and Rott, H., eds., Fron-
tiers in Belief Revision, volume 22 of Applied Logic Se-
ries. Kluwer Academic Publishers, Springer Netherlands.
393–408.

Kern-Isberner, G. 2008. Linking iterated belief change
operations to nonmonotonic reasoning. In Proceedings
of the Eleventh International Conference on Principles
of Knowledge Representation and Reasoning, 166–176.
Menlo Park, CA: AAAI Press.

Kullback, S. 1968. Information theory and statistics, vol-
ume 1. New York: Dover, 2nd edition.

Lehmann, D.; Magidor, M.; and Schlechta, K. 2001. Dis-
tance semantics for belief revision. Journal of Symboloc
Logic 66(1):295–317.

Lewis, D. 1976. Probabilities of conditionals and condi-
tional probabilities. Philosophical Review 85(3):297–315.

Paris, J., and Vencovsk, A. 1997. In defense of the maxi-
mum entropy inference process. International Journal of
Approximate Reasoning 17(1):77–103.

Paris, J. 1994. The Uncertain Reasoner’s Companion: A
Mathematical Perspective. Cambridge: Cambridge Uni-
versity Press.

141

Poole, D., and Mackworth, A. 2010. Artificial Intelligence:
Foundations of Computational Agents. New York, USA:
Cambridge University Press.

Rens, G., and Meyer, T. 2015. A new approach to proba-
bilistic belief change. In Russell, I., and Eberle, W., eds.,
Proceedings of the International Florida AI Research So-
ciety Conference (FLAIRS), 582–587. AAAI Press.

Shore, J., and Johnson, R. 1980. Axiomatic derivation of the
principle of maximum entropy and the principle of mini-
mum cross-entropy. Information Theory, IEEE Transac-
tions on 26(1):26–37.

Spohn, W. 1988. Ordinal conditional functions: A dynamic
theory of epistemic states. In Harper, W., and Skyrms, B.,
eds., Causation in Decision, Belief Change, and Statistics,
volume 42 of The University of Western Ontario Series in
Philosophy of Science. Springer Netherlands. 105–134.

Voorbraak, F. 1999. Partial Probability: Theory and Appli-
cations. In Proceedings of the First International Sympo-
sium on Imprecise Probabilities and Their Applications,
360–368. url: decsai.ugr.es/ smc/isipta99/proc/073.html.

Yue, A., and Liu, W. 2008. Revising imprecise probabilistic
beliefs in the framework of probabilistic logic program-
ming. In Proceedings of the Twenty-third AAAI Conf. on
Artificial Intelligence (AAAI-08), 590–596.

142 revising incompletely specified convex probabilistic belief bases

Reactive Policies with Planning
for Action Languages ∗

Zeynep G. Saribatur and Thomas Eiter
Institut für Informationssysteme, Technische Universität Wien

Favoritenstraße 9-11, A-1040 Vienna, Austria
{zeynep,eiter}@kr.tuwien.ac.at

Abstract

We describe a representation in a high-level transition system
for policies that express a reactive behavior for the agent. We
consider a target decision component that figures out what
to do next and an (online) planning capability to compute
the plans needed to reach these targets. Our representation
allows one to analyze the flow of executing the given reactive
policy, and to determine whether it works as expected. Addi-
tionally, the flexibility of the representation opens a range of
possibilities for designing behaviors.

Autonomous agents are systems that decide for themselves
what to do to satisfy their design objectives. These agents
have a knowledge base that describes their capabilities, rep-
resents facts about the world and helps them in reasoning
about their course of actions. A reactive agent interacts with
its environment. It perceives the current state of the world
through sensors, consults its memory (if there is any), reasons
about actions to take and executes them in the environment.
A policy for these agents gives guidelines to follow during
their interaction with the environment.

As autonomous systems become more common in our
lives, the issue of verifying that they behave as intended
becomes more important. During the operation of an agent,
one would want to be sure that by following the designed
policy, the agent will achieve the desired results. It would be
highly costly, time consuming and sometimes even fatal to
realize at runtime that the designed policy of the agent does
not provide the expected properties.

For example, in search and rescue scenarios, an agent
needs to find a missing person in unknown environments. A
naive approach would be to directly try to find a plan that
achieves the main goal of finding the person. However, this
problem easily becomes troublesome, since not knowing the
environment causes the planner to consider all possible cases
and find a plan that guarantees reaching the goal in all settings.
Alternatively, one can describe a reactive policy for the agent
that determines its course of actions according to its current
knowledge, and guides the agent in the environment towards
the main goal. A possible such policy could be “always

∗This work has been supported by Austrian Science Fund (FWF)
project W1255-N23.
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

move to the farthest unvisited point in visible distance, until
a person is found”. Following this reactive policy, the agent
would traverse the environment by choosing its actions to
reach the farthest possible point from the current state, and
by reiterating the decision process after reaching a new state.
The agent may also remember the locations it has been in
and gain information (e.g. obstacle locations) through its
sensors on the way. Verifying beforehand whether or not
the designed policy of the agent satisfies the desired goal
(e.g. can the agent always find the person?), in all possible
instances of the environment is nontrivial.

Action languages (Gelfond and Lifschitz 1998) provide a
useful framework on defining actions and reasoning about
them, by modeling dynamic systems as transition systems.
Their declarative property helps in describing the system
in an understandable, concise language, and they also ad-
dress the problems encountered when reasoning about ac-
tions. By design, these languages are made to be decid-
able, which ensures reliable descriptions of dynamic sys-
tems. As these languages are closely related with classical
logic and answer set programming (ASP) (Lifschitz 2008;
1999), they can be translated into logic programs and queried
for computation. The programs produced by such transla-
tions can yield sound and complete answers to such queries.
There have been various works on action languages (Gel-
fond and Lifschitz 1998; 1993; Giunchiglia and Lifschitz
1998) and their reasoning systems (Giunchiglia et al. 2004;
Gebser, Grote, and Schaub 2010), with underlying mecha-
nisms that rely on SAT and ASP solvers.

The shortage of representations that are capable of model-
ing reactive policies prevents one from verifying such policies
using action languages as above before putting them into use.
The necessity of such a verification capability motivates us
to address this issue. We thus aim for a general model that
allows for verifying the reactive behavior of agents in envi-
ronments with different types in terms of observability and
determinism. In that model, we want to use the represen-
tation power of the transition systems described by action
languages and combine components that are efficient for
describing reactivity.

Towards this aim, we consider in this paper agents with
a reactive behavior that decide their course of actions by
determining targets to achieve during their interaction with
the environment. Such agents come with an (online) planning

143

capability that computes plans to reach the targets. This
method matches the observe-think-act cycle of Kowalski and
Sadri (1999), but involves a planner that considers targets.
The flexibility in the two components - target development
and external planning - allow for a range of possibilities for
designing behaviors. For example, one can use HEX (Eiter et
al. 2005) to describe a program that determines a target given
the current state of an agent, finds the respective plan and the
execution schedule. ACTHEX programs (Fink et al. 2013), in
particular, provide the tools to define such reactive behaviors
as it allows for iterative evaluation of the logic programs and
the ability to observe the outcomes of executing the actions
in the environment. Specifically, we make the following
contributions:

(1) We introduce a novel framework for describing the se-
mantics of a policy that follows a reactive behavior, by
integrating components of target establishment and on-
line planning. The purpose of this work is not synthe-
sis, but to lay foundations for verification of behaviors
of (human-designed) reactive policies. The outsourced
planning might also lend itself for modular, hierarchic
planning, where macro actions (expressed as targets) are
turned into a plan of micro actions. Furthermore, out-
sourced planning may also be exploited to abstract from
correct sub-behaviors (e.g. going always to the farthest
point).

(2) We relate this to action languages and discuss possibil-
ities for policy formulation. In particular, we consider
the action language C (Giunchiglia and Lifschitz 1998)
to illustrate an application.

The remainder of this paper is organized as follows. After
some preliminaries, we present a running example and then
the general framework for modeling policies with planning.
After that, we consider the relation to action languages, and
as a particular application we consider (a fragment of) the
action language C. We briefly discuss some related work and
conclude with some issues for ongoing and future work.

Preliminaries
Definition 1. A transition system T is defined as T =
〈S, S0,A,Φ〉 where
• S is the set of states.
• S0 ⊆ S is the set of possible initial states.
• A is the set of possible actions.
• Φ : S × A → 2S is the transition function, returns the

set of possible successor states after applying a possible
action in the current state.
For any states s, s′ ∈ S, we say that there is a trajectory be-

tween s and s′, denoted by s→σ s′ for some action sequence
σ = a1, . . . , an where n ≥ 0, if there exist s0, . . . , sn ∈ S
such that s = s0, s

′ = sn and si+1 ∈ Φ(si, ai+1) for all
0 ≤ i < n.

We will refer to this transition system as the original tran-
sition system. The constituents S and A are assumed to be
finite in the rest of the paper. Note that, this transition sys-
tem represents fully observable settings. Large environments

cause high number of possibilities for states, which cause the
transition systems to be large. Especially, if the environment
is nondeterministic, the resulting transition system contains
high amount of transitions between states, since one needs to
consider all possible outcomes of executing an action.

Action Languages
Action languages describe a particular type of transition sys-
tems that are based on action signatures. An action signature
consists of a set V of value names, a set F of fluent names
and a set A of action names. Any fluent has a value in any
state of the world.

A transition system of an action signature 〈V,F,A〉 is
similar to Defn. 1, where A = A and Φ corresponds to the
relationR ⊆ S×A×S. In addition, we have a value function
V : F×S → V, where V (P, s) shows the value of P in state
s. A transition system can be thought as a labeled directed
graph, where a state s is represented by a vertex labeled with
the function P → V (P, s), that gives the value of the fluents.
Every triple 〈s, a, s′〉 ∈ R is represented by an edge leading
from a state s to a state s′ and labeled by a.

An action a is executable at a state s, if there is at least
one state s′ such that 〈s, a, s′〉 ∈ R and a is deterministic
if there is at most one such state. Concurrent execution of
actions can be defined by considering transitions in the form
〈s,A, s′〉 with a set A ⊆ A of actions, where each action
a∈A is executable at s.

An action signature 〈V,F,A〉 is propositional if its value
names are truth values: V={f, t}. In this work, we confine
to propositional action signatures.

The transition system allows one to answer queries about
the program. For example, one can find a plan to reach a goal
state from an initial state, by searching for a path between the
vertices that represent these states in the transition system.
One can express properties about the paths of the transition
system by using an action query language.

Running Example: Search Scenarios
Consider a memoryless agent that can sense horizontally
and vertically, in an unknown n×n grid cell environment
with obstacles, where a missing person needs to be found.
Suppose we are given the action description of the agent with
a policy of “always going to the farthest reachable point in
visible distance (until a person is found)”. Following this
reactive policy, the agent chooses its course of actions to
reach the farthest reachable point, referred as target, from its
current location with respect to its current knowledge about
the environment. After executing the plan and reaching a state
that satisfies the target, the decision process is reiterated and
a new target, hence a new course of actions, is determined.

Given such a policy, one would want to check whether or
not the agent can always find the person, in all instances of
the environment. Note that we assume that the obstacles are
placed in a way that the person is always reachable.

Figure 1 shows some possible instances for n=3, where
the square in a cell represents the agent and the dot represents
the missing person. The course of actions determined by the
policy in all the instances is to move to (3,1), which is the

144 reactive policies with planning for action languages

1 2 3
1

2

3

(a)

1 2 3
1

2

3

(b)

1 2 3
1

2

3

(c)

Figure 1: Possible instances of a search scenario

farthest reachable point, i.e. target. It can be seen that (a)
is an instance where the person can be found with the given
policy, while in (b) the agent goes in a loop and can’t find
the person, since after reaching (3,1) it will decide to move
to (1,1) again. In (c), after reaching (3,1) following its policy,
the agent has two possible directions to choose, since there
are two farthest points. It can either move to (3,3), which
would result in seeing the person, or it can move back to
(1,3), which would mean that there is a possibility for the
agent to go in a loop.

Notice that our aim is different from finding a policy (i.e.
global plan) that satisfies certain properties (i.e. goals) in an
unknown environment. On the contrary, we assume that we
are given a representation of a system with a certain policy,
and we want to check what it is capable (or incapable) of.

Modeling Policies in Transition Systems
A reactive policy is described to reach some main goal, by
guiding the agent through its interaction with the environ-
ment. This guidance can be done by determining the course
of actions to bring about targets from the current situation,
via externally computed plans. A transition system that mod-
els such policies should represent the flow of executing the
policy, which is the agent’s actual trajectory in the environ-
ment following the policy. This would allow for verifying
whether execution of a policy results in reaching the desired
main goal, i.e. the policy works.

We define such a transition system by clustering the states
into groups depending on a profile. A profile is determined
by evaluating a set of formulas over a state that informally
yield attribute (respectively feature) values; states with the
same attribute values are clustered into one. The choice of
formulas for determining profiles depends on the given policy
or the environment one is considering. Then, the transitions
between these clusters are defined according to the policy.
The newly defined transitions are able to show the evaluation
of the policy by a higher level action from one state to the
next state. This next state satisfies the target determined by a
target component, and the higher level action corresponds to
the execution of an externally computed plan.

Having such a classification on states and defining higher
level transitions between the states can help in reducing the
state space or the number of transitions when compared to the
original transition system. Furthermore, it aids in abstraction
and allows one to emulate a modular hierarchic approach, in
which a higher level (macro) action, expressed by a target,
is realized in terms of a sequence of (micro) actions that is
compiled by the external planner, which may use different
ways (planning on the fly, resorting to scripts etc.)

?

??

?

1 2 3
1

2

3

Figure 2: A cluster of states

State profiles according to the policy
We now describe a classification of states, which helps to
omit parts of the state that are irrelevant with respect to the
environment or the policy. This classification is done by
determining profiles, and clustering the states accordingly.

Example 1. Remember the possible instances from Figure 1
in the running example. Due to partial observability, the
agent is unable to distinguish the states that it is in, and the
unobservable parts are irrelevant to the policy. Now assume
that there are fluents that hold the information of the agent’s
location, the locations of the obstacles and the reachable
points. One can determine a profile of the form “the agent
is at (1,1), sees an obstacle at (1,3), and is able to reach to
points at (1,2), (2,1), (3,1)” by not considering the remaining
part of the environment that the agent can not observe. The
states that have this profile can be clustered in one group as
in Figure 2, where the cells with question marks demonstrate
that they are not observable by the agent.

For partially observable environments, the notion of in-
distinguishable states can be used in the classification of
states. The states that provide the same observations for the
agent are considered as having the same profile. However, in
fully observable environments, observability won’t help in
reducing the state space. One needs to find other notions to
determine profiles.

We consider a classification function, h : S → Ωh, where
Ωh is the set of possible state clusters. This is a general
notion applicable to fully and partially observable cases.

Definition 2. An equalized state relative to the classification
function h is a state ŝ ∈ Ωh. The term equalized comes
from the fact that the states in the same classification are
considered as the same, i.e. equal.

To talk about a state s that is clustered into an equalized
state ŝ, we use the notation s∈ ŝ, where we identify ŝ with its
pre-image (i.e. the set of states that are mapped to ŝ according
to h).

Different from the work by Son and Baral (2001) where
they consider a “combined-state” which consists of the real
state of the world and the states that the agent thinks it may
be in, we consider a version where we combine the real
states into one state if they provide the same classification
(or observation, in case of partial observability) for the agent.
The equalization of states allows for omitting the details that
are irrelevant to the behavior of the agent.

Transition systems according to the policy
We now define the notion of a transition system that is able
to represent the evaluation of the policy on the state clusters.

145

Definition 3. An equalized (higher level) transition system
Th, with respect to the classification function h, is defined as
Th = 〈Ŝ, Ŝ0, GB ,B,ΦB〉, where

• Ŝ is the finite set of equalized states;
• Ŝ0 ⊆ Ŝ is the finite set of initial equalized states, where
ŝ ∈ Ŝ0 if there is some si ∈ ŝ such that si ∈ S0 holds;

• GB is the finite set of possible targets relative to the be-
havior, where a target can be satisfied by more than one
equalized state;

• B : Ŝ → 2GB , is the target function that returns the
possible targets to achieve from the current equalized state,
according to the policy;

• ΦB : Ŝ → 2Ŝ is the transition function according to the
policy, referred to as the policy execution function, returns
the possible resulting equalized states after applying the
policy in the current equalized state.

The target function gets the equalized state as input and
produces the possible targets to achieve. These targets may
be expressed as formulas over the states (in particular, of
states that are represented by fluents or state variables), or in
some other representation. A target can be considered as a
subgoal condition to hold at the follow-up state, depending
on the current equalized state. The aim would be to intend to
reach a state that satisfies the conditions of the target, without
paying attention to the steps taken in between. That’s where
the policy execution function comes into the picture.

The formal description of the policy execution function is
as follows:

ΦB(ŝ) = {ŝ′ | ŝ′ ∈ Res(ŝ, σ),
σ ∈ Reach(ŝ, gB), gB ∈ B(ŝ)},

where Reach is an outsourced function that returns a plan
σ = 〈a1, . . . , an〉, n ≥ 0 needed to reach a state that meets
the conditions gB from the current equalized state ŝ:

Reach(ŝ, gB) ⊆ {σ | ∀ŝ′ ∈ Res(ŝ, σ) : ŝ′ |= gB}
where ŝ|=gB ⇔ ∀s∈ ŝ : s|=gB , and Res gives the resulting
states of executing a sequence of actions at a state ŝ:

Res(ŝ, 〈a1, . . . , an≥1〉) ={ ⋃
ŝ′∈Φ̂(ŝ,a1) Res(ŝ′, 〈a2, . . . , an〉) Φ̂(ŝ, a1)6=∅
{ŝerr} Φ̂(ŝ, a1)=∅

Res(ŝ, 〈〉) = {ŝ}
where the state ŝerr is an artifact state that does not satisfy
any of the targets, and

Φ̂(ŝ, a) = {ŝ′ | ∃s′ ∈ ŝ′ ∃s ∈ ŝ : s′ ∈ Φ(s, a)}.

Figure 3 demonstrates a transition in the equalized tran-
sition system. The equalized states may contain more than
one state that has the same profile. Depending on the current
state, ŝ, the policy chooses the next target, gB , that should be
satisfied. There may be more than one equalized state satis-
fying the same target. The policy execution function ΦB(ŝ)

ŝ

gB

s′1 s′2

s1

ΦB(ŝ)

a1

a2 ...

ŝ′

t̂1

t̂2

Figure 3: A transition in the equalized transition system

finds a transition into one of these equalized states, ŝ′, that
is reachable from the current equalized state. The transition
ΦB is considered as a big jump between states, where the
actions taken and the states passed in between are omitted.

Notice that we assume that the outsourced Reach function
is able to return conformant plans that guarantee to reach
a state that satisfies the determined targets. In particular, σ
may also contain only one action. For practical reasons, we
consider Reach to be able to return a subset of all conformant
plans. The maximal possible Reach , where we have equality,
is denoted with Reach0.

Consider the case of uncertainty, where the agent requires
to do some action, e.g. checkDoor , in order to get further
information about its state. One can define the target function
to return as target a dummy fluent to ensure that the action is
made, e.g. doorIsChecked , and given this target, the Reach
function can return the desired action as the plan. The non-
determinism or partial observability of the environment is
modeled through the set of possible successor states returned
by Res .

The generic definition of the equalized transition system al-
lows for the possibility of representing well-known concepts
like purely reactive systems or universal planning (Cimatti,
Riveri, and Traverso 1998a). To represent reactive systems,
one can describe a policy of “pick some action”. This way
one can model reactive systems that do not do reasoning,
but immediately react to the environment with an action. As
for the exactly opposite case, which is finding a plan that
guarantees reaching the goal, one can choose the target as
the main goal. Then, the Reach would have the difficult task
of finding a universal plan or a conformant plan that reaches
the main goal. If however, one is aware of such a plan, then
it is possible to mimic the plan by modifying the targets GB
and the target function B in a way that at each point in time
the next action in the plan is returned by Reach, and the cor-
responding transition is made. For that, one needs to record
information in the states and keep track of the targets.

As the function Reach is outsourced, we rely on an im-
plementation that returns conformant plans for achieving
transitions in the equalized transition systems. This naturally
raises the issue of whether a given such implementation is
suitable, and leads to the question of soundness (only correct

146 reactive policies with planning for action languages

plans are output) and completeness (some plan will be output,
if one exists). We next assess how expensive it is to test
this, under some assumptions about the representation and
computational properties of (equalized) transition systems,
which will then also be used for assessing the cost of policy
checking.

Assumptions We have certain assumptions on the repre-
sentation of the system. We assume that given a state s ∈ S
which is implicitly given using a binary encoding, the cost
of evaluating the classification h(s), the (original) transition
Φ(s, a) for some action a, and recognizing the initial state,
say with Φinit(s), is polynomial. The cost could also be
in NP, if projective (i.e. existentially quantified) variables
are allowed. Furthermore, we assume that the size of the
representation of a “target” in GB is polynomial in size of
the state, so that given a string, one can check in polynomial
time if it is a correct target description gB . This test can also
be relaxed to be in NP by allowing projective variables.

Given these assumptions, we have the following two re-
sults. These results show the cost of checking whether an im-
plementation of Reach that we have at hand is sound (delivers
correct plans) and in case does not skip plans (is complete);
we assume here that testing whether σ ∈ Reach(ŝ, gB) is
feasible in Πp

2 (this is the cost of verifying conformant plans,
and we may assume that Reach is no worse than a naive
guess and check algorithm).

Theorem 1 (soundness of Reach). Let Th = 〈Ŝ, Ŝ0, GB ,
B,ΦB〉 be a transition system with respect to a classification
function h. The problem of checking whether every transition
found by the policy execution function ΦB induced by a given
implementation Reach is correct is in Πp

3.

Proof (Sketch). According to the definition of the policy ex-
ecution function, every transition from a state ŝ to some state
ŝ′ corresponds to some plan σ returned by Reach(ŝ, gB).
Therefore, first one needs to check whether each plan σ =
〈a1, a2, . . . , an〉 returned by Reach given some ŝ and gB is
correct. For that we need to check two conditions on the
corresponding trajectories of the plan:

(i) for all partial trajectories ŝ0, ŝ1, . . . , ŝi−1 it holds
that for the upcoming action ai from the plan σ,
Φ̂(ŝi−1, ai) 6= ∅ (i.e. the action is applicable)

(ii) for all trajectories ŝ0, ŝ1, . . . , ŝn, ŝn |= gB .

Checking whether these conditions hold is in Πp
2.

Thus, to decide whether for some state ŝ and target gB
the function ΦB(ŝ, gB) does not work correctly, we can
guess ŝ (resp. s∈ ŝ), gB and a plan σ and verify that
σ ∈Reach(ŝ, gB) and that σ is not correct. As the verifi-
cation is doable with an oracle for Σp2 in polynomial time, a
counterexample for correctness can be found in Σp3; thus the
problem is in Πp

3.

The complexity is lower, if output checking of Reach
has lower complexity (in particular, it drops to Πp

2 if output
checking is in co-NP).

The result for soundness of Reach is complemented with
another result for completeness with respect to short (polyno-
mial size) conformant plans that are returned by Reach .

Theorem 2 (completeness of Reach). Let Th = 〈Ŝ, Ŝ0, GB ,
B,ΦB〉 be a transition system with respect to a classification
function h. Deciding whether for a given implementation
Reach , ΦB fulfills ŝ′ ∈ ΦB(ŝ) whenever a short conformant
plan from ŝ to ŝ′ exists in Th, is in Πp

4.

Proof (Sketch). For a counterexample, we can guess some ŝ
and ŝ′ (resp. s∈ ŝ, s′ ∈ ŝ′) and some short plan σ and verify
that (i) σ is a valid conformant plan in Th to reach ŝ′ from
ŝ, and (ii) that a target gB exists such that Reach(ŝ, gB)
produces some output. We can verify (i) using a Πp

2 oracle
to check that σ is a conformant plan, and we can verify (ii)
using a Πp

3 oracle (for all guesses of targets gB and short
plans σ′, either gB is not a target for ŝ or σ′ is not produced
by Reach(ŝ, gB)). This establishes membership in Πp

4.

As in the case of soundness, the complexity drops if check-
ing the output of Reach is lower (in particular, to Πp

3 if the
output checking is in co-NP).

We also restrict the plans σ that are returned by
Reach(ŝ, gB) to have polynomial size. This constraint would
not allow for exponentially long conformant plans (even if
they exist). Thus, the agent is forced under this restriction to
develop targets that it can reach in polynomially many steps,
and then to go on from these targets. Informally, this does
not limit the capability of the agent in general. The “long”
conformant plans can be split into short plans with a modified
policy and by encoding specific targets into the states.

We denote the main goal that the reactive policy is aiming
for by g∞. Our aim is to have the capability to check whether
following the policy always results in reaching some state that
satisfies the main goal. That is, for each run, i.e. sequence
ŝ0, ŝ1, . . . such that ŝ0 ∈ Ŝ0 and ŝi+1 ∈ ΦB(ŝi), for all
i ≥ 0, there is some j ≥ 0 such that ŝj |= g∞. (The behavior
could be easily modified to stop or to loop in any state ŝ that
satisfies the goal.) This way we can say whether the policy
works or not. Under the assumptions from above, we obtain
the following

Theorem 3. The problem of determining that the policy
works is in PSPACE.

Proof (Sketch). One needs to look at all runs ŝ0, ŝ1, . . . from
every initial state ŝ0 in the equalized transition system and
check whether each such run has some state ŝj that satisfies
the main goal g∞. Given that states have a representation in
terms of fluent or state variables, there are at most exponen-
tially many different states. Thus to find a counterexample, a
run of at most exponential length in which g∞ is not satisfied
is sufficient. Such a run can be nondeterministically built
in polynomial space; as NPSPACE = PSPACE, the result
follows.

Note that in this formulation, we have tacitly assumed
that the main goal can be established in the original system,
thus at least some trajectory from some initial state to a state
fulfilling the goal exists (this can be checked in PSPACE as

147

well). In a more refined version, we could define the working
of a policy relative to the fact that some abstract plan would
exist that makes g∞ true; naturally, thus may impact the
complexity of the policy checking.

Above, we have been considering arbitrary states, targets
and transitions in the equalized transition system. In fact,
for the particular behavior, only the states that can be en-
countered in runs really matter; these are the reachable states
defined as follows.
Definition 4. A state ŝ is reachable from an initial state in
the equalized transition system if and only if s ∈ Ri for some
i ∈ N whereRi is defined as follows.

R0 = Ŝ0

Ri+1 =
⋃
ŝ∈Ri

ΦB(ŝ)
. . .

R∞ =
⋃
i≥0Ri.

Under the assumptions that apply to the previous results,
we can state the following.
Theorem 4. The problem of determining whether a state in
an equalized transition system is reachable is in PSPACE.

The notions of soundness and completeness of an out-
sourced planning function Reach could be restricted to reach-
able states; however, this, would not change the cost of testing
these properties in general (assuming that ŝ ∈ R is decidable
with sufficiently low complexity).

Constraining equalization
The definition of Φ̂ allows for certain transitions between
equalized states that don’t have corresponding concrete tran-
sitions in the original transition system. However, the aim
of defining such an equalized transition system is not to
introduce new features, but to keep the structure of the origi-
nal transition system and discard the unnecessary parts with
respect to the policy. Therefore, one needs to give further re-
strictions on the transitions of the equalized transition system,
in order to obtain the main objective.

Let us consider the following condition

ŝ′ ∈ Φ̂(ŝ, a)⇔ ∀s′ ∈ ŝ′, ∃s ∈ ŝ : s′ ∈ Φ(s, a) (1)

This condition ensures that a transition between two states
ŝ1, ŝ2 in the equalized transition system represents that any
state in ŝ2 has a transition from some state in ŝ1. An equal-
ization is called proper if condition (1) is satisfied.

Theorem 5. Let Th=〈Ŝ, Ŝ0, GB ,B,ΦB〉 be a transition sys-
tem with respect to a classification function h. Let Φ̂ be the
transition function that the policy execution function ΦB is
based on. The problem of checking whether Φ̂ is proper is in
Πp

2.

Proof (sketch). As a counterexample, one needs to guess
ŝ, a, ŝ′ ∈ Φ̂(ŝ, a) and s′ ∈ ŝ′ such that no s∈ ŝ has
s′ ∈Φ(s, a).

The results in Theorems 1-5 are all complemented by lower
bounds for realistic realizations of the parameters (notably,
for typical action languages such as fragments of C).

The following proposition is based on the assumption that
the transition function Φ̂ satisfies condition (1).

Proposition 1 (soundness). Let Th=〈Ŝ, Ŝ0, GB ,B,ΦB〉 be
a transition system with respect to a classification function
h. Let ŝ1, ŝ2 ∈ Ŝ be equalized states that are reachable
from some initial states, and ŝ2 ∈ ΦB(ŝ1). Then for any
concrete state s2 ∈ ŝ2 there is a concrete state s1 ∈ ŝ1 such
that s1 →σ s2 for some action sequence σ, in the original
transition system.

Proof. For equalized states ŝ1, ŝ2, having ŝ2 ∈ΦB(ŝ1)
means that ŝ2 satisfies a goal condition that is determined
at ŝ1, and is reachable via executing some plan σ. With the
assumption that (1) holds, we can apply backwards tracking
from any state s2 ∈ ŝ2 following the transitions Φ corre-
sponding to the actions in the plan σ backwards. In the end,
we can find a concrete state s1 ∈ ŝ1 from which one can
reach the state s2 ∈ ŝ2 by applying the plan σ in the original
transition system.

Thus, we can conclude the following corollary, with the
requirement of only having initial states clustered into the
equalized initial states (i.e. no “non-initial” state is mapped
to an initial equalized state). Technically, it should hold that
∀s ∈ S0 : h−1(h(s)) ⊆ S0.

Corollary 1. If there is a trajectory in the equalized tran-
sition system with initial state clustering from an equalized
initial state ŝ0 to g∞, then it is possible to find a trajectory
in the original transition system from some concrete initial
state s0 ∈ ŝ0 to g∞.

We want to be able to study the reactive policy through the
equalized transition system. In case the policy does not work
as expected, there should be trajectories that shows the reason
of the failure. Knowing that any such trajectory found in the
equalized transition system exists in the original transition
system is enough to conclude that the policy indeed does not
work.

Current assumptions can not avoid the case where a plan
σ returned by Reach on the equalized transition system does
not have a corresponding trajectory in the original transition
system. Therefore, we consider an additional condition as

ŝ′ ∈ Φ̂(ŝ, a)⇔ ∀s ∈ ŝ, ∃s′ ∈ ŝ′ : s′ ∈ Φ(s, a) (2)

that strengthens the properness condition (1). Under this
condition, every plan returned by Reach can be successfully
executed in the original transition system and will establish
the target gB . However, still we may lose trajectories of the
original system as by clustering states they might not turn
into conformant plans. Then one would need to modify the
description of determining targets, i.e. the set of targets GB
and the function B.

Example 2. Remember the environment and the policy de-
scribed in the running example, and consider the scenario
shown in Figure 4(a). It shows a part of the equalized transi-
tion system constructed according to the policy. The states
that are not distinguishable due to the partial observability
are clustered into the same state.

148 reactive policies with planning for action languages

?

?

?

??

?

...

1 2 3
1

2

3
ŝ1

(a) Successor states from ΦB(ŝ1)

?

?

?

?

?

?

?

? ?

(b) Disregarding irrelevant states

Figure 4: Parts of an equalized transition system

The policy is applied according to current observations,
and the successor states show the possible resulting states.
The aim of the policy is to have the agent move to the farthest
reachable point, which for ŝ1 is (3, 1). As expected, there
can be several states that satisfy the target gB=robotAt(3, 1).
The successor states of ΦB(ŝ1) is determined by Res(ŝ1, σ)
computing the possible resulting states after executing the
plan σ returned by Reach(ŝ1, gB). Considering that the agent
will gain knowledge about the environment while moving,
there are several possibilities for the resulting state.

Notice that this notion of a transition system can help in
reducing the number of states, due to the fact that it is able to
disregard states with information on fluents that does not have
any effect on the system’s behavior. For example, Figure 4(b)
shows a case where the unknown parts behind the obstacles
are not relevant to the agent’s behavior, i.e. the person can be
found nonetheless.

Relation with Action Languages
In this section, we describe how our definition of a higher-
level transition system that models the behavior can fit into
the action languages. Given a program defined by an action
language and its respective (original) transition system, we
now describe how to model this program following a reactive
policy and how to construct the corresponding equalized
transition system according to the policy.

Classifying the state space
The approach to classify the (original) state space relies on
defining a function that classifies the states. There are at least
two kinds of such classification; one can classify the states
depending on whether they give the same values for certain
fluents and omit the knowledge of the values of the remaining
fluents, or one can introduce a new set of fluents and classify
the states depending on whether they give the same values
for the new fluents:
• Type 1: Extend the set of truth values by V′ = V ∪ {u},

where u denotes the value to be unknown. Extend the value

function by V ′ : F × S → V′. Then, consider a new set
of groups of states, Ŝ = {ŝ1, . . . , ŝn}, where a group state
ŝi contains all the states s ∈ S that give the same values
for all p ∈ F, i.e. Ŝ = {ŝ | ∀d, e ∈ S, d, e ∈ ŝ⇐⇒ ∀p ∈
F : V ′(p, d)=V ′(p, e) }. The value function for the new
group of states is V̂ : F× Ŝ → V′.

• Type 2: Consider a new set of (auxiliary) fluent names
Fa, where each fluent p ∈ Fa is related with some fluents
of F. The relation can be shown with a mapping ∆ :
2F×V → Fa × V. Then, consider a new set of groups of
states, Ŝ = {ŝ1, . . . , ŝn}, where a group state ŝi contains
all the states s ∈ S that give the same values for all p ∈
Fa, i.e. Ŝ = {ŝ | ∀d, e ∈ S, d, e ∈ ŝ⇐⇒ ∀p ∈ Fa :
V (p, d)=V (p, e) }. The value function for the new group
of states is V̂ : Fa × Ŝ → V.
We can consider the states in the same classification to

have the same profile, and the classification function h as a
membership function that assigns the states into groups.

Remarks: (1) In Type 1, introducing the value unknown for
the fluents allows for describing sensing actions and knowing
the true value of a fluent at a later state. Also, one needs to
give constraints for a fluent to have the unknown value. e.g. it
can’t be the case that a fluent related to a grid cell is unknown
while the robot is able to observe it.
(2) In Type 2, one needs to modify the action descriptions
according to the newly defined fluents and define abstract
actions. However, in Type 1, the modification of the action
definitions is not necessary, assuming that the actions are de-
fined in a way that the fluents that are used when determining
an action always have known values.

Once a set of equalized states is constructed according
to the classification function, one needs to define the reac-
tive policy to determine the transitions. Next, we describe
how a policy can be defined from an abstract point of view,
through a target language which figures out the targets and
helps in determining the course of actions, and show how the
transitions are constructed.

Defining a target language
Let F̂ denote the set of fluents that the equalized transition
system is built upon. Let F(F̂) denote the set of formulas in
an abstract language that can be constructed over F̂.

We consider a declarative way of finding targets. Let
FB(F̂)⊆F(F̂) be the set of formulas that describe target de-
termination. Let FGB

(F̂)⊆F(F̂) denote the set of possible
targets that can be determined via the evaluation of the for-
mulas FB(F̂) over the related fluents in the equalized states.

Notice that separation of the target determining formulas
FB(F̂) and the targets FGB

(F̂) is to allow for outsourced
planners that are able to understand simple target formulas.
These planners do not need to know about the target language
in order to find plans. However, if one is able to use planners
that are powerful enough, then the target language can be
given as input to the planner, so that the planner determines
the target and finds the corresponding plan.

149

To define a relation between FB(F̂) and FGB
(F̂), we intro-

duce some placeholder fluents. Let FB(F̂) = {f1, . . . , fn}
be the set of target formulas. Consider a new set of fluents
F̂B = {pf1 , . . . , pfn} where each of the formulas in FB is
represented by some fluent. The value of a fluent depends on
whether its respective formula is satisfied or not, i.e. for a
state s, s |= f ⇐⇒ V (pf , s) = t. Now consider a mapping
M : 2F̂B → 2FGB

(F̂) where

M({pf1 , pf2 , . . . , pfm}) = {g1, . . . , gr},m≤n and r≥ 1

means that if there is a state s such that s|=fi, 1≤ i≤m and
s2 f for the remaining formulas f ∈FB(F̂)\{f1, . . . , fm},
then in the successor state s′ of s, s′ |= gi for some 1≤ i≤ r,
should hold. We consider the output of M to be a set of
targets in order to represent the possibility of nondeterminism
in choosing a target.

Transition between states
The transition for the equalized transition system can be
denoted with R̂⊆Ŝ×Ŝ, where R̂ corresponds to the policy
execution function ΦB that uses (a) the target language to
determine targets, (b) an outsourced planner (corresponding
to the function Reach) to find conformant plans and (c) the
computation of executing the plans (corresponding to the
function Res). The outsourced planner finds a sequence
of actions σ ∈ 2A from an equalized state ŝ to one of its
determined targets gB . Then the successor equalized states
are computed by executing the plan from ŝ. Transition R̂
shows the resulting states after applying the policy.
Example 3. Let us consider a simple blocksworld example
where a policy (of two phases) is defined as follows:
• if at phase 1 and not all the blocks are on the table, move

one free block on a stack with highest number of blocks to
the table.

• if all the blocks are on the table, move to phase 2.
• if at phase 2 and not all the blocks are on top of each other,

move one of the free blocks on the table on top of the stack
with more than one block (if exists any, otherwise move
the block on top of some block).
Since the policy does not take blocks’ labels into consid-

eration, a classification can be of the following form for n
number of blocks: We introduce an n-tuple 〈b1, . . . , bn〉 to
denote equalized states such that for i ≤ n, bi would repre-
sent the number of stacks that have i blocks. For example,
for 4 blocks, a state 〈1, 0, 1, 0〉 where b1 = 1, b2 = 0, b3 =
1, b4 = 0 would represent all the states in the original tran-
sition system with the profile “contains a stack of 1 block
and a stack of 3 blocks”. Notice that in the original transition
system for 4 labeled blocks, there are 24 possible states that
have this profile and if the blocks need to be in order, then
there are 4 possible states.

Figure 5 demonstrates the corresponding equalized transi-
tion system for the case of 4 blocks. The equalized transition
system for this example is in the following form:

• Ŝ is the set of equalized states according to the abstraction
as described above.

〈1, 0, 1, 0〉

〈0, 2, 0, 0〉

〈2, 1, 0, 0〉

〈2, 1, 0, 0〉

〈1, 0, 1, 0〉

〈0, 0, 0, 1〉

Phase 1 Phase 2

〈4, 0, 0, 0〉

Figure 5: Eq. transition system of blocksworld (n= 4)

• Ŝ0 ∈ Ŝ is the initial equalized states (all elements of Ŝ
except 〈0, . . . , 0, 1〉).

• GB = Ŝ, since the policy is related with all the blocks, it
can determine targets as the whole states.

• B : Ŝ → Ŝ is the target function.
• ΦB : Ŝ → Ŝ is the policy execution function, returning the

resulting successor state after applying one action desired
by the behavior, shown as in Figure 5.

Application on Action Language C
In this section, we describe how one can construct an equal-
ized transition system for a reactive system that is represented
using the action language C (Giunchiglia and Lifschitz 1998).
First, we give some background information about the lan-
guage C, then move on to the application of our definitions.

Syntax A formula is a propositional combination of fluents.
Given a propositional action signature 〈{f, t},F,E},

whose set E of elementary action names is disjoint from F,
an action description is a set of expressions of the following
forms:
• static laws:

caused F if G, (3)
where F andG are formulas that do not contain elementary
actions;

• dynamic laws:

caused F if G after U, (4)

where F and G are as above, and U is a formula.

Semantics The transition system 〈S, V,R〉 described by
an action description D is defined as follows:

(i) S is the set of all interpretations s of F such that, for
every static law (3) s satisfies F if s satisfies G,

(ii) V (P, s) = s(P), i.e. identify s with V (P, s),

(iii) R is the set of all triples 〈s,A, s′〉, A ⊆ E, such that s′
is the only interpretation of F which satisfies the heads
of all
• static laws (3) in D for which s′ satisfies G, and

150 reactive policies with planning for action languages

• dynamic laws (4) in D for which s′ satisfies G and
s ∪A satisfies U .

We focus on a fragment of the language C where the heads
of the static and dynamic laws only consist of literals. This
restriction on the laws reduces the cost of evaluating the
transitions 〈s,A, s′〉 ∈R to polynomial time. Thus, we match
the conditions on complexity from above. Furthermore, by
well-known results on the complexity of action language C
(Turner 2002; Eiter et al. 2004) all the results in Theorems
1-5 can be turned into completeness results already for this
fragment.

Defining a policy
Let F̂ be the set of fluents that are relevant to the policy. The
target language is defined explicitly via static laws using the
fluents in F̂, denoted FB(F̂), where a target is determined by
the evaluation of these formulas in a state.
Example 4. An example of a target language for the running
example uses causal laws from C:

caused target(X1 ,Y1) if
robotAt(X ,Y) ∧ farthest(X ,Y ,X1 ,Y1)

∧ not personDetected .
caused personDetected if personDetected(X ,Y).
caused targetPerson(X ,Y) if personDetected(X ,Y).
caused personFound if personDetected(X ,Y)

∧ robotAt(X ,Y).

where FGB
(F̂) consists of all atoms target(X ,Y) and

targetPerson(X ,Y) for 1≤X ≤n, 1≤Y ≤n.
The target of a state according to the policy is computed

through joint evaluation of these causal laws over the state
with the known fluents about the agent’s location and the
reachable points. Then, the outsourced planner may take as
input the agent’s current location and the target location, to
find a plan to reach the target.

Equalized transition system The equalized transition sys-
tem 〈Ŝ, V̂ , R̂〉 that describes the policy is defined as follows:

(i) Ŝ is the set of all interpretations of F̂ such that, for
every static law (3) ŝ satisfies F if ŝ satisfies G,

(ii) V̂ (P, ŝ) = ŝ(P), where P ∈ F̂,

(iii) R̂ ⊆ Ŝ × Ŝ is the set of all 〈ŝ, ŝ′〉 such that
(a) for every s′ ∈ ŝ′ there is a trajectory from some

s ∈ ŝ of the form s,A1, s1, . . . , An, s
′ in the original

transition system;
(b) for static laws f1, f2, . . . , fm ∈ FB(F̂) for which

ŝ satisfies the body, it holds that ŝ′ |= g for some
g ∈M(pf1 , . . . , pfm).

Notice that in the definition of the transition relation R̂ in
(iii) there is no description of (a) how a trajectory is computed
or (b) how a target is determined. This gives flexibility on
the implementation of these components.

Other languages can be similarly used to describe the equal-
ized transition system, as long as they are powerful enough
to express the concepts from the previous section.

Related Work
There are works being conducted on the verification of
GOLOG programs (Levesque et al. 1997), a family of high-
level action programming languages defined on top of action
theories expressed in the situation calculus. The method of
verifying properties of non-terminal processes are sound, but
do not have the guarantee of termination due to the verifica-
tion problem being undecidable (De Giacomo, Ternovskaia,
and Reiter 1997; Claßen and Lakemeyer 2008). By resorting
to action formalisms based on description logic, decidability
can be achieved (Baader and Zarrieß 2013).

Verifying temporal properties of dynamic systems in the
context of data management is studied by (Calvanese et al.
2013) in the presence of description logic knowledge bases.
However, target establishment and planning components are
not considered in these works, and they do not address real
life environment settings.

The logical framework for agent theory developed by Rao
and Georgeff (1991) is based on beliefs, desires and inten-
tions, in which agents are viewed as being rational and acting
in accordance with their beliefs and goals. There are many
different agent programming languages and platforms based
on the BDI approach. Some works carried out on verifying
properties of agents represented in these languages, such as
(Bordini et al. 2006; Dennis et al. 2012). These approaches
consider very complex architectures that even contain a plan
library where plans are matched with the intentions or the
agent’s state and manipulate the intentions.

Synthesizing and Verifying Plans There have been vari-
ous works on synthesizing plans via symbolic model check-
ing techniques by Cimatti et al. (1998b; 1998a), Bertoli et al.
(2006). These approaches are able to solve difficult planning
problems like strong planning and strong cyclic planning.

Son and Baral (2001) extend the action description lan-
guage by allowing sensing actions and allow to query condi-
tional plans. These conditional plans are general plans that
consist of sensing actions and conditional statements.

These works address a different problem then ours. When
nondeterminism and partial observability are taken into ac-
count, finding a plan that satisfies the desired results in the
environment is highly demanding. We consider a much less
ambitious approach where given a behavior, we aim to check
whether or not this behavior gives the desired results in the
environment. However, our framework is capable emulating
the plans found by these works.

Execution Monitoring There are logic-based monitoring
frameworks that monitor the plan execution and recover the
plans in case of failure. The approaches that are studied
are replanning (De Giacomo, Reiter, and Soutchanski 1998),
backtracking to the point of failure and continuing from there
(Soutchanski 2003), or diagnosing the failure and recov-
ering from the failure situation (Fichtner, Großmann, and
Thielscher 2003; Eiter et al. 2007).

These works consider the execution of a given plan, while
we consider a given reactive policy that determines targets
and use (online) planning to reach these targets.

151

Conclusion and Future Work
In this paper, we described a high-level representation that
models reactive behaviors, and integrates target development
and online planning capabilities. Flexibility in these com-
ponents does not bound one to only use action languages,
but allows for the use of other formalizations as well. For
future work, one could imagine targets to depend on further
parameters or to incorporate learning from experience in the
framework. It is also possible to use other plans, e.g. short
conditional plans, in the planner component.

The long-term goal of this work is to check and verify
properties of the reactive policies for action languages. In
order to solve these problems practically, it is necessary to
use techniques from model checking, such as abstraction,
compositional reasoning and parameterization. Also, the use
of temporal logic formulas is needed to express complex
goals such as properties of the policies. Our main target
is to work with action languages, and to incorporate their
syntax and semantics with such model checking techniques.
The general structure of our framework allows one to focus
on action languages, and to investigate how to merge these
techniques.

References
Baader, F., and Zarrieß, B. 2013. Verification of Golog pro-
grams over description logic actions. Frontiers of Combining
Systems 181–196.
Bertoli, P.; Cimatti, A.; Riveri, M.; and Traverso, P. 2006.
Strong planning under partial observability. Artificial Intelli-
gence 170(4):337–384.
Bordini, R. H.; Fisher, M.; Visser, W.; and Wooldridge, M.
2006. Verifying multi-agent programs by model checking.
Autonomous agents and multi-agent systems 12(2):239–256.
Calvanese, D.; De Giacomo, G.; Montali, M.; and Patrizi,
F. 2013. Verification and synthesis in description logic
based dynamic systems. In Web Reasoning and Rule Systems.
Springer. 50–64.
Cimatti, A.; Riveri, M.; and Traverso, P. 1998a. Auto-
matic OBDD-based generation of universal plans in non-
deterministic domains. In Proc. of AAAI/IAAI, 875–881.
Cimatti, A.; Riveri, M.; and Traverso, P. 1998b. Strong
planning in non-deterministic domains via model checking.
AIPS 98:36–43.
Claßen, J., and Lakemeyer, G. 2008. A logic for non-
terminating Golog programs. In Proc. of KR, 589–599.
De Giacomo, G.; Reiter, R.; and Soutchanski, M. 1998.
Execution monitoring of high-level robot programs. In Proc.
of KR, 453–465.
De Giacomo, G.; Ternovskaia, E.; and Reiter, R. 1997. Non-
terminating processes in the situation calculus. In Working
Notes of Robots, Softbots, Immobots: Theories of Action,
Planning and Control, AAAI97 Workshop.
Dennis, L. A.; Fisher, M.; Webster, M. P.; and Bordini, R. H.
2012. Model checking agent programming languages. Auto-
mated Software Engineering 19(1):5–63.

Eiter, T.; Faber, W.; Leone, N.; Pfeifer, G.; and Polleres, A.
2004. A logic programming approach to knowledge-state
planning: Semantics and complexity. ACM Trans. Comput.
Log. 5(2):206–263.
Eiter, T.; Ianni, G.; Schindlauer, R.; and Tompits, H. 2005. A
Uniform Integration of Higher-Order Reasoning and External
Evaluations in Answer-Set Programming. In Proc. of IJCAI,
90–96.
Eiter, T.; Erdem, E.; Faber, W.; and Senko, J. 2007. A logic-
based approach to finding explanations for discrepancies in
optimistic plan execution. Fundamenta Informaticae 79(1-
2):25–69.
Fichtner, M.; Großmann, A.; and Thielscher, M. 2003. Intel-
ligent execution monitoring in dynamic environments. Fun-
damenta Informaticae 57(2-4):371–392.
Fink, M.; Germano, S.; Ianni, G.; Redl, C.; and Schüller,
P. 2013. Acthex: Implementing HEX programs with action
atoms. Logic Programming and Nonmonotonic Reasoning
317–322.
Gebser, M.; Grote, T.; and Schaub, T. 2010. Coala: A
compiler from action languages to ASP. In Proc. of JELIA,
360–364. Springer Heidelberg.
Gelfond, M., and Lifschitz, V. 1993. Representing action
and change by logic programs. The Journal of Logic Pro-
gramming 17(2):301–321.
Gelfond, M., and Lifschitz, V. 1998. Action languages.
Electronic Transactions on AI 3(16).
Giunchiglia, E., and Lifschitz, V. 1998. An action language
based on causal explanation: Preliminary report. In Proc. of
AAAI/IAAI, 623–630.
Giunchiglia, E.; Lee, J.; Lifschitz, V.; McCain, N.; and
Turner, H. 2004. Nonmonotonic causal theories. Artificial
Intelligence 153(1):49–104.
Kowalski, R. A., and Sadri, F. 1999. From logic programming
towards multi-agent systems. Ann. Math. Artif. Intell. 25(3-
4):391–419.
Levesque, H. J.; Reiter, R.; Lesperance, Y.; Lin, F.; and
Scherl, R. B. 1997. GOLOG: A logic programming language
for dynamic domains. The Journal of Logic Programming
31(1):59–83.
Lifschitz, V. 1999. Action languages, answer sets and plan-
ning. In The Logic Programming Paradigm: a 25-Year Per-
spective, 357–373. Springer.
Lifschitz, V. 2008. What is answer set programming? In
Proc. of. AAAI, 1594–1597.
Rao, A. S., and Georgeff, M. P. 1991. Modeling rational
agents within a BDI-architecture. In Proc. of KR, 473–484.
Son, T. C., and Baral, C. 2001. Formalizing sensing actions –
a transition function based approach. Artificial Intelligence
125(1):19–91.
Soutchanski, M. 2003. High-level robot programming and
program execution. In Proc. of ICAPS Workshop on Plan
Execution.
Turner, H. 2002. Polynomial-length planning spans the
polynomial hierarchy. In Proc. of JELIA, 111–124. Springer.

152 reactive policies with planning for action languages

Static and Dynamic Views on the Algebra of Modular Systems

Eugenia Ternovska

Abstract

The paper develops a knowledge representation framework
called Algebra of Modular Systems. Each module can be
given by a knowledge base, be an agent, a knowledge base,
an ASP, ILP, CP program, etc.
Under the “still” or “static” view, the algebra is the same as
Codd’s relational algebra (with recursion added), but opera-
tions are applied to classes of structures instead of relational
tables. Under the “dynamic” view, when we indicate the di-
rection of information flow, the same algebra is a modal tem-
poral logic.
We use the algebra for a high-level encoding of problem solv-
ing on graphs using Dynamic Programming on tree decom-
positions. We also use it to specify an algorithm for solving
quantified boolean formulas.
We show that the well-known Propositional Dynamic Logic
is a fragment of the algebra with information flow.
We demonstrate a connection of our formalism to the situa-
tion calculus with the cognitive robotics language Golog.

Introduction
“There is a point where in the mystery of existence contradic-
tions meet; where movement is not all movement and stillness
is not all stillness... where the idea and the form, the within
and the without, are united; where infinite becomes finite, yet
not losing its infinity.” Rabindranath Tagore

In 1970 Edgar (Ted) F. Codd introduced a relational data
model and two query languages: relational calculus and re-
lational algebra. Relational calculus is what we usually call
FO logic. The key contribution of Codd was to associate
with a declarative specification language (FO logic), a pro-
cedural counterpart which is the relational algebra, that later
was implemented by smart engineers and became a multi-
billion dollar industry of relational database management
systems (RDBMS).
A significant change has happened in the past decade. While
at the low level everything boils down to SQL queries, in-
teractions between “larger pieces” became increasingly im-
portant. Such “larger pieces”are business enterprises, web
services, software, solvers in the world of declarative prob-
lem solving, etc. The emergence of large-scale interactions
poses significant challenges to KR and database researchers.
Among those challenges, the most urgent is scallability

of proposed approaches to data management. The impor-
tance of scallability is justified by the Moore’s Law (1965),
according to which the number of transistors in a dense
integrated circuit doubles approximately every two years.
Moore’s prediction proved accurate for several decades: ca-
pabilities of hardware grow exponentially.
We expect that, as hardware capabilities grow, people will
be able to combine, as easily as relational tables in SQL
queries, entities of a completely different magnitude:

• knowlege bases, e.g. representing the work of various en-
terprises, into complex business processes,

• specifications of combinatorial optimization and search
problems for solving new, more complex, problems.

To be more concrete, let us think that each one of these het-
erogeneous “larger pieces” is represented declaratively, e.g.,
by Logic Programming rules, ILP equations, SMT theories,
FO knowledge bases, etc.
While database queries, expressed using Codd’s relational
calculus, can be viewed as relations definable with respect to
a structure (a database), declarative problem specifications
can be understood as axiomatizations of classes of struc-
tures. The two notions (in italic) are defined in two consec-
utive chapters in the classic textbook on mathematical logic
(Enderton 1972).
The main idea of our Algebra of Modular Systems is to lift
Codd’s algebra from operations on relational tables to oper-
ations on classes of structures and to add recursion.1
The operations of the algebra (to be defined formally) can
be seen in this grammar for Modular Systems:

E ::= ⊥|Mi|Zj |E × E|E + E| − E|πδE|σΘE|µZj .E,
and they roughly correspond to conjunction, disjunction,
negation, existential quantifier (πδ) of FO logic. Selection
(σΘ) restricts the module to structures satisfying the formula
Θ. In addition, least fixed point is used. We now consider
two examples, a simple and a more realistic.
Example 1. Let MHC(V,X, Y) and M2Col(V,X,Z, T) be
atomic modules “computing” a Hamiltonian Circuit, and a
2-colouring. They can do it in different ways. For example,
MHC can use ASP, and M2Col an imperative program or a

1Here, we require a model-theoretic semantics, although vari-
ous generalizations are possible.

1

153

human child with two pencils. Here, V is a relational vari-
able of arity 1, X,Y are relational variables of arity 2, and
the first module decides if Y forms a Hamiltonian Circuit
(represented as a set of edges) in the graph given by vertex
set V and edge set X . Variable X of the second module has
arity 2, and variables Z, T are unary; the module decides
if unary relations Z, T specify a proper 2-colouring of the
graph with edge set X . The following algebraic expression
determines a combination of 2-Colouring and Hamiltonian
Circuit, that is whether or not there is a 2-colourable Hamil-
tonian Circuit.2

M2Col−HC(V,X,Z, T) :=
πV,X,Z,T ((MHC(V,X, Y)×M2Col(V, Y, Z, T)).

(1)

Projection “keeps” V,X,Z, T and hides the interpretation of
Y in MHC, since it is the same as Y ’s in M2Col.
Example 2. This modular system can be used by a com-
pany that provides logistics services (arguments of atomic
modules are omitted).

MLSP := σB≡B′(MK ×MTSP).

It decides how to pack goods and deliver them. It solves
two NP-complete tasks interactively, – Multiple Knapsack
(module MK) and Travelling Salesman Problem (module
MTSP). The system takes orders from customers (items to
deliver, their profits, weights), and the capacity of trucks, de-
cides how to pack items in trucks, and for each truck, solves
a TSP problem. The feedback B′ about solvability of TSP is
sent back to MK . The two sub-problems, MK and MTSP ,
are solved by different sub-divisions of the company (with
their own business secrets) that cooperate towards the com-
mon goal. A solution to the compound module, MLSP , to
be acceptable, must satisfy both sub-systems.
Most practical examples use simple combinations of
modules, where only conjunctions, disjunctions, perhaps
with projections and selections, are used. The university
timetabling example (Järvisalo et al. 2009) and Examples
1, 2 are of this kind. Examples where a (declaratively
specified) module calls itself recursively are much harder to
come by. We will however show two natural applications. In
the first one, combinatorial search problems on graphs are
solved using their tree decompositions. In that application,
the algebra allows us to write compact specifications of
Dynamic Programming algorithms on tree decompositions.
In the second application, our algebra is used to describe a
recursive algorithm for solving quantified boolean formulas
(QBFs). Note that here we are talking about recursion over
a module, not over a predicate symbol, which happens fre-
quently inside, say, ASP modules. Recursion over predicate
symbols is not really needed in the algebra itself since free
second-order variables are implicitly ∃SO-quantified, which
gives at least as much expressive power as such a recursion
can provide. Feedbacks from module to module, however,
(as in Example 2) are very useful.

Dynamic View Problem solving often involves finding so-
lutions for given inputs. Most combinatorial problems are of

2We use := for “is by definition”.

that form. The Logistics Service Provider in Example 2 has,
e.g., customer requests as an input, and routes and packing
solutions as outputs. One can have e.g. edges of a graph on
the input to formula (1), and colours on the output. To cap-
ture this meaning, we introduce information flow to the al-
gebra. Thus, we can now reason about actions or changes
performed by the modules. Interpreting our algebra over a
transition system gives rise to a modal temporal logic.
There are several examples of connections between classical
(“still” or “static”) and modal (“dynamic”) logics, and the
notion of bisimulation plays an important role there. These
are the so-called model-theoretic characterization theorems.
For example, van Benthem shown that modal logic is a
bisimulation-invariant fragment of first-order logic. Janin
and Walukiewicz proved that the modal µ-calculus Lµ is the
bisimulation-invariant fragment of monadic second-order
logic MSO. (Abu Zaid, Grädel, and Jaax 2014) studied
a related notion of bisimulation safety introduced by van
Benthem. They introduced a new logic called Bisimulation
Safe Fixed Point Logic (BSFP) that is more expressive than
MSO. The BSFP logic is a very elegant formalism that uses
both unary and binary fixed points. We will discuss it in
more detail and use this logic in the context of modular sys-
tems with information flow. We investigate connections with
other modal temporal logics. From the connection to BSFL,
it follow that Propositional Dynamic Logic (PDL) is a frag-
ment of our algebra with information flow.
We were quite surprised to notice that essentially the same
constructions as in BSFP, but in axiomatic setting, appeared
some 18 years earlier in the context of the situation calcu-
lus and GOLOG (Levesque et al. 1997; De Giacomo, Ter-
novskaia, and Reiter 1997). We discuss connections to the
situation calculus in detail.
The duality of the “static” and “dynamic” views on modular
systems opens new possibilities for developing algorithms
to answer questions about the “static” algebra. For example,
finding solutions to multi-language constraint problems can
be done by solving Model Checking task for the modal tem-
poral logic. This implies that both SAT-based and symbolic
model checking techniques can be used.

Preliminaries A vocabulary (denoted, e.g. τ, σ, ε, ν) is
a finite sequence of non-logical (predicate and function)
symbols, each with an associated arity. A τ -structure, e.g.
A = (A;SA1 , ..., S

A
n , f

A
1 , ..., f

A
m , c

A
1 , ..., c

A
l) is a domain

A together with interpretations of predicate symbols, func-
tion and constants (0-ary functions) in τ . To simplify pre-
sentation, we view functions as a particular kind of rela-
tions and consider relational structures only. We use nota-
tions vocab(A), vocab(φ), vocab(M) to denote vocabulary
of structure A, formula φ and module M , respectively, and
we use B|σ to mean structure B restricted to vocabulary σ.
Symbol := means “denotes” or “is by definition”.
Least Fixed Point logic FO(LFP) is broadly used in CS and
is described in several books. For a background on that logic
we refer to, e.g. (Grädel et al. 2007).
Just as the basic modal logic is a fragment of first-order
logic, the modal mu-calculus Lµ (that includes the well-
known temporal logics CTL, CTL∗ and LTL) is a frag-

154 static and dynamic views on the algebra of modular systems

ment of FO(LFP). Moreover, the modal mu-calculus Lµ is
a bisimulation-invariant fragment of monadic second-order
logic MSO. More details on fixed point logics and MSO
can be found in (Dawar and Gurevich 2002; Libkin 2004;
Grädel et al. 2007).

“Still” Algebra
We call this version of the algebra “still” to distinguish it
from the version with information propagation below.3

Syntax Let τ be a fixed vocabulary. W.l.o.g. we assume
that τ is relational (it does not contain function symbols).
Let τM = {M1,M2, . . . } be a fixed vocabulary of atomic
module symbols, τ ∩ τM = ∅. Atomic module symbols are
of the form Mi(Xi1 , . . . , Xik) (also written Mi(X)), where
each Xi is a relational variable. Each Xj has an associated
arity aj . The set {Xi1 , . . . , Xik} is called the variable vo-
cabulary of Mi and is denoted vvoc(Mi). We also allow re-
lational constants from τ in place of the variables, provided
their arities match. In this case, vocab(Mi) denotes the com-
bined (variable and constant) vocabularies of Mi. Let Z1,
Z2, . . . be a collection of module variables. Algebraic ex-
pressions for modules are built by the grammar:

E ::= ⊥|Mi|Zj |E×E|E+E|−E|πδE|σΘE|µZj .E. (2)

Modules in τM are atomic. Modules that are not atomic are
called compound. The operations (except µZj .E) are like
in Codd’s relational algebra, but are of a higher order,4 and
are defined on classes of structures rather than on relational
tables. The three set-theoretic operations are union (+), in-
tersection (×), complementation (−). Projection (πδE) is a
family of unary operations, one for each δ. Each relational
symbol (constant or variable) in δ must appear in E. The
operation restricts each structure A of M to A|δ leaving the
interpretation of other symbols open. Thus, it increases the
number of models. The condition Θ in selection σΘE is an
expression of the form L1 ≡ L2, where Li is a relational
variable or a relational constant from τ , or ‘R’, where R is a
relation (set of tuples of domain elements).5 Thus, we bring
semantic elements into syntax in the latter case. Selection
reduces the number of models. 6

Semantics To interpret algebraic expressions, we use val-
uations (v,V). Intuitively, v maps relational variables in
vvoc(Mi) to symbols from a relational vocabulary τ so that
the arities of the relational variables in vvoc(Mi) match
those of the corresponding symbols in τ . Function V is pa-
rameterised by v and provides a domain (which does not
have to be finite), and interpretations of atomic modules Mi

3We use the terms “still” and “static” interchangeably.
4For example, projection is onto a set of relational constants or

variables rather than object constants or variables.
5A more general version allows Θ to be built up using ∧, ∨, ¬,

from equivalence operators ≡, 6≡. That choice for Θ may be more
efficient computationally, but does not add expressive power since
the same effect is achievable trough the other operations.

6Selection can be used, in particular, to connect modules by
equating relational symbols of equal arity, and to express ground-
ing by brining relations over domain elements into the syntax.

as explained below. Let C be the set of all τ -structures over
the domain fixed by V . Valuation V maps each atomic mod-
ule symbol Mi to a subset V(v,Mi) of C so that for any two
τ -structuresA1,A2 which coincide on vocab(Mi), we have
A1 ∈ V(v,Mi) iff A2 ∈ V(v,Mi). All of the above applies
to module variables Zj as well. In practice, V can, for ex-
ample, associate one module symbols with stable models of
an ASP program, another module symbol with models of an
ILP encoding, yet another one with a set of databases used
by a particular enterprise, etc.
Remark 1. Note that v resembles a “call by reference” in
programming. Valuations V (parameterized with v) can be
viewed as “oracles” or decision procedures associated with
modules, and can be of arbitrary computational complexity.
The extensions JEKV,v of algebraic expressions E are sub-
sets of C defined as follows.

J⊥KV,v := ∅.
JMiKV,v := V(v,Mi) for some v.
JZjKV,v := V(v, Zj) for some v.
JE1 + E2KV,v := JE1KV,v ∪ JE2KV,v.
J−EKV,v := C \ JEKV,v.
Jπδ(E)KV,v := {A | ∃A′ (A′ ∈ JEKV,v and A|δ = A′|δ)}.
JσL1≡L2EKV,v := {A | JEKV,v and LA1 = LA2 }.
JµZj .EKV,v :=

⋂{E ⊆ C | JEKV[Z:=E],v ⊆ E
}
.

Here, V[Z:=E] means a valuation that is exactly like V ex-
cept Z is interpreted as E .
Given a well-formed algebraic expression E defined by (2),
we say that structure A satisfies E under valuation (V, v),
notation A |=(V,v) E if A ∈ JEKV,v .
Some useful operations on modules are: Extending the vo-
cabulary ofE to a bigger vocabulary: πδ(E×>). Renaming
P to Q in E: πvocab(E)\{P}∪{Q}σP≡Q(E×>). Difference:
E1−E2 = E1×(−E2). Universal module:> = −⊥. Also,
as we would expect, E1 × E2 = −((−E1) + (−E2)).
Remark 2. Note that while individual modules are already
capable of solving optimization tasks (the optimum value
can be given as an output in one of the arguments), the least
fixed point construct can generate the least value over a col-
lection of modules combined in an algebraic expression.
Proposition 1 (Logic Counterpart). The algebraic opera-
tions are equivalently representable in logic, where ‘+’ cor-
responds to disjunction, ‘−’ to negation, ‘πν’ to second-
order existential quantification over τ \ ν, ‘σΘ’ to conjunc-
tion with Θ, µZ.E to the least fixed point construct.
Thus, our formalism is FO(LFP) over modules that are of an
arbitrary expressive power.
Example 3. Expression (1) for M2Col−HC(V,X,Z, T) is
represented in logic as

∃Y [MHC(V,X, Y) ∧M2Col(V, Y, Z, T)].

Dynamic Programming on Tree Decompositions
We use our algebra to specify high-level recursive control in
solving combinatorially hard problems using dynamic pro-
gramming and tree decomposition, along the lines of (Abse-
her et al. 2014; Charwat and Woltran 2015).

155

Definition 1. (Robertson and Seymour 1984) A tree de-
composition of an undirected graph G = (V ;E) is a pair
(T ,X) where T = (VT , ET) is a tree and X : VT → 2V

assigns to every node VT of the tree a set of vertices V from
the original graph. The sets of vertices X = (Xt)t∈VT have
to satisfy the following conditions: (1)

⋃
t∈VT

Xt = V . (2)
{x, y} ∈ E ⇒ ∃t ∈ VT : {x, y} ⊆ Xt. (3) x ∈ Xt′ ∧ x ∈
Xt′′ ∧ t′′′ ∈ path(t′, t′′)⇒ x ∈ Xt′′′ . Xt is also called the
bag for the vertex t ∈ VT . The width w of the decomposi-
tion is maxt∈VT |Xt| − 1. The tree-width k of a graph is the
minimum width over all its tree decompositions.

It follows that every vertex of the graph is contained in
some bag of the tree decomposition, adjacent vertices ap-
pear together in some bag, and nodes that contain the same
vertex are connected. We denote an edge between vertices
x, y by {x, y}. For a decomposition node t, we denote by
Et := {{x, y} ∈ E | x, y ∈ Xt} the edges of G induced
by the vertices Xt. We focus on a special type of tree de-
composition.
Definition 2. A tree decomposition T = (VT , ET) is called
normalized if each t ∈ VT is of one of the following types:
(1) Leaf node: t has no child nodes. (2) Introduction node:
t has exactly one child node t′ with Xt′ ⊂ Xt and |Xt′ | =
|Xt| − 1. (3) Removal node: t has exactly one child node t′
with Xt ⊂ Xt′ and |Xt′ | = |Xt| + 1. (4) Join node: t has
exactly two child nodes t′ and t′′ with Xt = Xt′ = Xt′′ .

Example 4. Modules used: tree decomposition
MTD(V,E,Xt, Et, Ut, EUt, Xt′ , Xt′′ , Lt) and 3-
Colouring M3Col(Xt, Et, R,B,G). Intuitively, (V,E)
is the original graph, (Xt, Et) is the current bag with its
adges, Xt′ , Xt′′ are its children, Ut is true on the vertex
that has been introduced or removed, and EUt on the edges
that lead to such vertices, and Lt specifies the label in
{l, j, r, i} of a particular node in tree decomposition. In
M3Col, (Xt, Et) is the graph which we colour withR,B,G.
The problem is represented as

MTD(V,E,Xt, Et, Ut, EUt, Xt′ , Xt′′)∧µZ.Ψ(Z,MTD,M3Col),

where Z is a module variable of the form
Z(V,E,Xt, Et, R,B,G) over which recursive iteration is
performed. µZ.Ψ(Z,MTD,M3Col) specifies dynamic pro-
gramming algorithm by recursion over tree decomposition,
with Ψ(Z,MTD,M3Col) := φl ∨ φi ∨ φr ∨ φj .

Base case, leaf:

φl := σ(Lt≡‘〈l〉′∧Xt′≡⊥∧Xt′′≡⊥∧Ut≡⊥)[M3Col(Xt, Et, R,B,G)
∧MTD(V,E,Xt, Et, Ut, EUt, Xt′ , Xt′′ , Lt)]

We use ⊥ for predicate constant “false”. The selection
above requires that the label of the leaf is l, there are no
child nodes (bags) (Xt′ ≡ ⊥ ∧ Xt′′ ≡ ⊥), and there is no
introduced/removed vertex v in the bag Xt (Ut ≡ ⊥). Mod-
ule M3Col performs 3-Colouring of the bag Xt with edges
Et, where the tree decomposition is MTD.
Introduced vertex case:

φi := σ(Lt≡‘〈i〉′∧Et≡EUt∧Xt′′≡⊥)[
Z(V,E,Xt′ , Et′ , R,B,G) ∧M3Col(Xt, Et, R,B,G)
∧MTD(V,E,Xt, Et, Ut, EUt, Xt′ , Xt′′ , Lt)]

Removed vertex case:
φr := ∃R∃B∃G[σ((R≡Ut∨B≡Ut∨G≡Ut)∧Lt≡‘〈r〉′∧Xt′′≡⊥)[
Z(V,E,Xt′ , Et′ , R,B,G) ∧M3Col(Xt, Et, R,B,G)
∧MTD(V,E,Xt, Et, Ut, EUt, Xt′ , Xt′′ , Lt)]

Join vertex case:
φr := σ(Lt≡‘〈j〉′)[
Z(V,E,Xt′ , Et′ , R,B,G) ∧ Z(V,E,Xt′′ , Et′′ , R,B,G)
∧MTD(V,E,Xt, Et, Ut, EUt, Xt′ , Xt′′ , Lt)]

Dynamic programming algorithms for different problems
on tree decompositions of graphs (e.g. from (Charwat and
Woltran 2015)) can be formulated in our algebra in a symi-
lar manner.

Algebra with Information Flow
Modules that have inputs and outputs are very common.
Many software programs and hardware devices are of that
form. In the Logistics Service Provider (Example 2), e.g.
users’ requests could be on the input, and truck routes and
packing solutions on the output.
In this section, we add information propagation to the
algebra, so that modules become binary higher-order input-
output relations. This version of the algebra may be called
“dynamic”. In algebraic expressions and corresponding
logic formulas, we underline designated input symbols, i.e.,
those in σM . Output symbols are free (are not quantified).
For example:

∃Y [MHC(V ,X, Y) ∧M2Col(V , Y, Z, T)]. (3)

The quantified symbol Y is not visible from the outside. The
output vocabulary of this compound modular system is ε =
{Z, T} (for the two colours), the input vocabulary is σ =
{V,X} (for the vertices and edges). In fact any direction of
information propagation can be specified, e.g. from colours
to graphs in 2-Colouring.
Fixing an input and an output vocabularies in some mod-
ules allows us to talk about the model expansion (MX) task
(Mitchell and Ternovska 2005). In this task, a given struc-
ture, which might have an empty vocabulary, is expanded
with interpretations of new vocabulary symbols to satisfy a
specification. Complexity-wise, MX lies in-between model
checking (full structure is given) and satisfiability (no struc-
ture is given). The task generalizes to the formalism of Mod-
ular Systems.

Model Expansion (MX) Task Given: B|σ and algebraic
expression α with input symbols σ. Find: B such that B sat-
isfies α. Structure B expands structure B|σ and is called a
solution of modular system α for a particular input B|σ .
Thus, the algebra with information flow may be called “a
logic of hybrid MX tasks”, and it will be interpreted over
transition systems.7

7An interesting version is where only some inputs and outputs
are specified, and some modules, even though are known to be bi-
nary, do not have input-output assignments. In this case, we obtain
a collection of transition systems, one for each possible assignment,
and both sceptical (under all input-output assignments) and brave
reasoning (under some input-output assignment) can be studied.

156 static and dynamic views on the algebra of modular systems

Syntax Fix a relational vocabulary τ and a vocabulary of
atomic module symbols τM so that τ ∩ τM = ∅.
Let τP , where τP ⊆ τM , be a vocabulary of atomic mod-
ule symbols where inputs are not specified. We call them
propositions. Let τact, where τact ⊆ τM , be a vocabulary
of atomic module symbols Mi(Xi1 , . . . , Xik), where inputs
are underlined. We call them actions. For one module sym-
bol Mi, we can potentially have both a proposition and sev-
eral actions, depending on the choice of the inputs.
We define a calculus of binary relations as follows.

α ::= ⊥|Mi?|Ma|Zj |α+ α|α ◦ α|πδα|σΘα| ∼ α|µZj .α (4)

Here, Mi are propositions, Ma are actions, ∼ is a unary
operation which is a special kind of negation, as is used
in modal temporal logics. Variables Zj range over actions.
We require that Zj occurs positively (under an even number
of negations ∼) in µZj .α. Requirements on πδα and σΘα
are as before. The calculus is essentially BSFP (Abu Zaid,
Grädel, and Jaax 2014), but with selection and projection
added, and where we use modules for both unary and binary
relations, which makes the semantics much more compli-
cated.

Semantics Define a transition system T :=
(V ; (MTa)a, (M?Ti)i) (parameterized by valuation (V, v)
defined above) that has domain V which is the set of all
τ -structures over a fixed domain, and it interprets all actions
Ma as subsets of V × V denoted by JMaKT ,V,v , and all
monadic propositions Mi? by structures (now nodes in the
transition graph) JMi?KT ,V,v ⊆ V in which they are true.
Module variables Zj that occur free in α are interpreted
as actions, i.e., as subsets of V × V . Their interpretations
are denoted JZjKT ,V,v . We require that for each M?i
(respectively, Ma), symbols in vocab(M?i) (respectively,
vocab(Ma), vocab(Zj)) are interpreted by (T ,V, v) in the
same way for all structures (= states of T) B (respectively,
pairs of structures) on which they are true. As before, we
require that for any two τ -structures A1, A2 which coincide
on vocab(Mi), we have A1 ∈ V(v,Mi) iff A2 ∈ V(v,Mi).
We define the extension JαKT ,V,v of formula α in T under
valuation (V, v) inductively below. One can understand this
definition as follows. First, v maps relational variables to
symbols of the vocabulary τ , so that we can talk about τ -
structures (that compose concrete modules). Second, V pro-
vides an interpretation to each atomic module, which is a
set of structures as before (i.e., a concrete module). From
now on, we view modules as either actions or propositions,
depending on whether or not inputs-outputs are specified.
Actions are the transitions in the transition system T , and
propositions are labels of the states of T . Sequential com-
position ◦ and non-deterministic choice + act as expected,
projection adds non-determinism, similarly to +, and selec-
tion restricts the action to that where the interpretations of
L1 and L2 are equal (there are three cases, when both L1

and L2 are inputs, both are outputs, and one is input, one
is output), with interpretations as we would expect. The se-
mantics of µZj .α is exactly like that of the least fixed point
operator in the modal mu-calculus Lµ. An interesting oper-
ation is negation ∼. It acts like negation in modal logic, and

its meaning will be more clear when we discuss the “two-
sorted” version of (4). The semantics of atomic actions will
be more clear when we explain the connections to the situa-
tion calculus.

J⊥KT ,V,v := ∅.
JMi?KT ,V,v := {(B,B) ∈ V T×V T | B ∈ V(v,Mi) for some v}.
JMaKT ,V,v := {(B1,B2) ∈ V T×V T | B1|τ\εMa

= B2|τ\εMa

and B2 ∈ V(v,Ma) for some v}.
Jα1 + α2KT ,V,v := Jα1KT ,V,v ∪ Jα2KT ,V,v.
Jα1 ◦ α2KT ,V,v := {(A,B) ∈ V T×V T |
∃C((A, C) ∈ Jα1KT ,V,v and (C,B) ∈ Jα2KT ,V,v)}.
Jπδ(α)KT ,V,v := {(B1,B2) ∈ V T×V T |
∃C1∃C2 ((C1, C2) ∈ JαKT ,V,v, C1|δ = B1|δ and C2|δ = B2|δ)}.
J∼ αKT ,V,v = {(B,B) ∈ V T×V T | ∀B′ (B,B′) 6∈ JαKT ,V,v},
no outgoing α-transition.
JµZj .αKT ,V,v :=

⋂{
R ⊆ V T×V T : JαKT ,V[Z:=R],v ⊆ R

}
.

JσL1≡L2(α)KT ,V,v := {(B1,B2) ∈ V T×V T | 3 cases:
1) (B1,B2) ∈ JαKT ,V,v and {L1, L2} ⊆ σα and B1 |=FO L1 ≡ L2

2) (B1,B2) ∈ JαKT ,V,v and {L1, L2}) ⊆ εα and B2 |=FO L1 ≡ L2

3) L1 ∈ σα and L2 ∈ εα and
∃C((C,B2) ∈ JαKT ,V,v , B1|τ\{L1} = C|τ\{L2},B2 |=FO (L1 ≡ L2)).

Case 3 expresses Feedback from output L2 to input L1.

Example 5. To illustrate transitions using our examples, in
(3), firstMHC(V ,X, Y) makes transition by producing pos-
sibly several Hamiltonian Circuits. The interpretation of the
output vocabulary, {Y } changes, everything else is trans-
ferred by inertia. Then each resulting structure is taken as
in input to 2-Colouring, M2Col(V , Y, Z, T), where edges in
the cycle, Y , are “fed” to the second argument of M2Col,
although this is hidden from the outside observer by the ex-
istential quantifier in (3). The second module produces non-
deterministic transitions, one for each generated colouring.

Following (Abu Zaid, Grädel, and Jaax 2014), we define:

D :=∼ ⊥, π1(α) := ∼∼ α.
By these definitions,

JDKT ,V,v = {(B,B) ∈ V T×V T },
Jπ1(α)KT ,V,v := {(B,B) ∈ V T×V T |∃B′ (B,B′) ∈ JαKT ,V,v}.

That is,D is the diagonal and π1 abbreviates projection onto
the first argument of the binary relation (onto all the inputs).
The latter operation identifies the states in V where there is
an outgoing α-transition.

Two-Sorted Syntax The grammar (4) for the algebra with
information flow can be equivalently represented in a “two-
sorted” syntax, where expressions for state formulas φ and
processes α are defined by mutual recursion.

α ::= D | ∅ |Ma | Zj | α+ α | α ◦ α | πδ(α) | σΘ(α) | φ? | µZj .α
φ ::= Mi |Xi | φ ∨ φ | ¬φ | 〈α〉φ | µXj .φ

(5)
Thus, we can write 〈α〉φ (respectively, [α]φ) to express that
after some (respectively, all) executions of modular system
α, property φ holds. Notice that we have binary (for pro-
cesses) and unary (for state formulas) fixed points.

157

The two representations of the algebra (one-sorted and two-
sorted) are equivalent. It follows from a theorem from (Abu
Zaid, Grädel, and Jaax 2014) that holds also in our setting,
where we have modules for actions and propositions.
Theorem 1. For every state formula φ in two-sorted syntax
(5) there is a formula φ̂ in the minimal syntax (4) such that
T ,V, v |= φ iff T ,V, (v, v) |= π1φ̂, and for every action
formula α there is an equivalent formula α̂ in the minimal
syntax.
It also follows from (Abu Zaid, Grädel, and Jaax 2014) that
the well-known Propositional Dynamic Logic (PDL) is a
fragment of the logic introduced above.
Proposition 2. The Propositional Dynamic Logic (PDL)

α ::= Ma | α+ α | α ◦ α | φ? | α∗
φ ::= Mi | φ ∨ φ | ¬φ | 〈α〉φ (6)

is a fragment of (5).

Proof. It is sufficient to express α∗ since the other opera-
tions of PDL are a subset of (5). We have α∗ := µZ.(D +
Z ◦ α).

Model Expansion and Model Checking Tasks for Mod-
ular Systems A very naive method to solve model expan-
sion for a modular system α would be to guess a structure
expanding the input, and to check if it satisfies the algebraic
expression. However, one can also develop an algorithm that
identifies the set of all states S ⊆ V in the transition system
where an algebraic expression holds. Such an algorithm can
be developed for a fragment of the calculus that corresponds
to the mu-calculus Lµ. The states in S will contain all ex-
pansions, for all instances. Then one can check whether a
particular instance structure is in that set. A basic way to
obtain S is by labelling the states of T by sub-expressions
of α that hold in those states, going bottom-up on the struc-
ture of α. A better way is to use Binary Decision Diagrams
(BDDs) and perform this labelling symbolically, as is stan-
dard in symbolic model checking.

Specification of Solving Quantified Boolean
Formulas (QBFs) as an Algebraic Expression

In this section, we consider quantified boolean formulas,
such as, for example, ∀x(∃y(x× y) +∀z(¬x+ z)). We will
demonstrate an algebraic expression with a fixed point that
encodes an algorithm for evaluation of such QBFs. We also
connect such an eveluation with symbolic model checking
of a mu-calculus formula.
Example 6. We assume that the QBF formulas that are used
in the input are well-formed, all negations are pushed in-
wards to appear in front of boolean atoms only. The “small-
est” formulas appearing in the parse tree are propositional
formulas that occur just after inner-most quantifier. We also
assume that all variables are bound by either ∃ or ∀.
Modules used: parse tree of a QBF formula:
MPT(S,Xφ, Xt, Xt′ , Xt′′ , Lt, Qt) and SAT
MSAT(Xt, Tin, Fin, Tout, Fout). Intuitively, unary rela-
tion S specifies a set of symbols, those used in QBFs and a
special symbol , e.g. {x, y, z, . . . , (,),∃,∀, },

Recall that QBF variables are elements of the domain. In
each structure, all variables appearing in the QBF are parti-
tioned into the interpretations of Tout, Fout, which stand for
true and false, respectively. These two relations describe all
possible satisfying assignments of each sub-formula.
MSAT(Xt, Tin, Fin, Tout, Fout) generates all possible truth
assignments of the sub-formula encoded by Xt (the so-
called ‘generate’ part of the overall algebraic expression in-
coding solving QBFs), and each application of the selection
operator in the recursive computation limits those assign-
ments (the so-called “constraint” or “test” part).
The intepretations of Tin and Fin each contain exactly one
element in each structure, and are constructed as follows.
For all variables, for all structures in the module MSAT, if
the interpretaion of Tout contains that variable, then it ap-
pears in the interpretaion of Tin in that structure, and the in-
terpretation of Fin is empty. Symmetrically, for all variables,
for all structures in the module MSAT, if the interpretaion of
Fout contains that variable, then it appears in the interpre-
taion of Fin in that structure, and the interpretation of Tin is
empty.
The interpretations of Tin, Fin, and those of Tout, Fout in
each structure of MSAT are constructed so that the truth
value of a particular QBF variable is not true and false in
the same structure, as it should be in a truth assignment.
The problem is represented (in the one-sorted syntax) as

∃Xt∃Xt′∃Xt′′∃Lt∃Qt∃Tin∃Fin[
MPT(S,Xφ, Xt, Xt′ , Xt′′ , Lt, Qt) ∧ µZ.Ψ(Z,MPT,MSAT)],

(7)
where Z is a module variable of the form

Z(Xt, Qt, Tin, Fin, Tout, Fout) over which recursive it-
eration is performed. Existentially quantified variables are
not visible “from the outside”. Thus, we have S and Xφ on
the input, and Tout, Fout on the output.
Expression µZ.Ψ(Z,MPT,MSAT) specifies an algorithm
for evaluating QBFs by recursion over their parse trees,
with Ψ(Z,MPT,MSAT) := φl ∨ φ∃ ∨ φ∀ ∨ φ+ ∨ φ×.

Base case, leaf:

φl := σ(Lt≡‘〈 〉′∧Qt≡‘〈 〉′∧Xt′≡⊥∧Xt′′≡⊥)[
MSAT(Xt, Tin, Fin, Tout, Fout)
∧MPT(S,Xφ, Xt, Xt′ , Xt′′ , Lt, Qt)].

We use ⊥ for predicate constant “false”. The selection
above requires that the label of the leaf is , there are no
quantified variables (Qt ≡ ‘〈 〉′) there are no child sub-
formulas (Xt′ ≡ ⊥ ∧Xt′′ ≡ ⊥).
Module MSAT solves propositional satisfiability of the sub-
formulas Xt, where the parse tree is given by MPT.
Case ∀:
φ∀ := σ(Lt≡‘〈∀〉′∧Xt′′≡⊥)[MPT(S,Xφ, Xt, Xt′ , Xt′′ , Lt, Qt)
∧σQt≡Tin [Z(Xt′ , Qt, Tin, Fin, Tout, Fout)]
∧σQt≡Fin [Z(Xt′ , Qt, Tin, Fin, Tout, Fout)]].

Case ∃ is very similar, except disjunction is used instead of
conjunction:

φ∃ := σ(Lt≡‘〈∃〉′∧Xt′′≡⊥)[MPT(S,Xφ, Xt, Xt′ , Xt′′ , Lt, Qt)
∧[σQt≡Tin [Z(Xt′ , Qt, Tin, Fin, Tout, Fout)]
∨σQt≡Fin [Z(Xt′ , Qt, Tin, Fin, Tout, Fout)]]].

158 static and dynamic views on the algebra of modular systems

Conjunction case (×):
φ× := σ(Lt≡‘〈×〉′)[MPT(S,Xφ, Xt, Xt′ , Xt′′ , Lt, Qt)
∧Z(Xt′ , Qt, Tin, Fin, Tout, Fout)
∧Z(Xt′′ , Qt, Tin, Fin, Tout, Fout)].

Disjunction case (+):
φ+ := σ(Lt≡‘〈+〉′)[MPT(S,Xφ, Xt, Xt′ , Xt′′ , Lt, Qt)
∧[Z(Xt′ , Qt, Tin, Fin, Tout, Fout)
∧Z(Xt′′ , Qt, Tin, Fin, Tout, Fout)]].

Temporal Model Checking to Solve QBFs
Since, in the dynamic version, we interpret algebrac expres-
sions over transition systems, and the specification above (7)
is a modal mu-calculus Lµ formula, we can use temporal
logic model checking to solve QBFs. Each state in the tran-
sition system is a structure over the entire vocabulary. The
main difference is that instead of simple propositions that
hold in states of the transition system, we have potentially
computationally complex modules that have to be checked
in those states. For examle, in the case of our QBF example,
we need to check whether leaf formulas hold in the states,
that is we need to use the propositional satisfiability module
MSAT.
If we want to use symbolic model checking, we need to rep-
resent subsets of the set of all states, i.e., subsets of the set of
all structures as BDDs. This is possible since each structure
(a state in the stransition system) can be viewed as a set of
ground atomic formulas. The transition relation in the QBF
example is genarated dynamically, through the binary mod-
ule variable Z, and it follows the subformula relation in the
parse tree of the QBF on the input. A BDD for this relation
can also be constructed, and the rest is standard.

Connection to the Situation Calculus and
GOLOG

The Situation Calculus(see (Reiter 2001)) is a second order
language that gives an axiomatic way to describe transition
systems. All changes are the result of actions. A possible
world history, which is a sequence of actions, is represented
by a first order term called a situation. The constant S0 is
used to denote the initial situation. A binary function symbol
do(α, s) denotes the successor situation to s resulting from
performing the action α. Predicate symbol Poss(a, s) spec-
ifies conditions on actions being executable is a situation.
Relations (functions) whose truth values vary from situation
to situation are called fluents. They are denoted by predicate
(function) symbols taking a situation term as their last ar-
gument. Axiomatizations of a dynamic domain include: (1)
Action precondition axioms, one for each primitive action.
These characterize the relation Poss, and give the precon-
ditions for the performance of an action in a situation. (2)
Successor state axioms, one for each fluent. These capture
the causal laws of the domain, together with a solution to
the frame problem. (3) Unique names axioms for the prim-
itive actions, stating that different names for actions denote
different actions. (4) Axioms describing the initial situation.
All the axiom together specify a transition system.

Connection to the Situation Calculus Atomic module
actions in 4 are very similar to the actions of the situa-
tion calculus. Module Ma “looks” at the interpretations of
the input symbols σMa

in the structure B1 (current “situa-
tion”), and expands B1|σMa

to produce interpretation of εMa

“recorded” in the structure B2 (one of the “Ma-successor”
“situations”). Interpretations of all other symbols, including
those in σMa

, stay the same, and get transferred from B1 to
B2 by inertia. This is similar to the frame axioms in the situ-
ation calculus as described in R. Reiter’s book (Reiter 2001).
Notice that, similarly to the situation calculus, inertia is ap-
plied to atomic modules only. Each structure in module Ma

may be seen as composed from its σMa part “checked” in
the structure B1, and its εMa

part “recorded” in the structure
B2. Notice also that because of inertia, successor structure
B2 contains information about both σMa

and εMa
part of a

structure in Ma. Thus, the union of all Ma-successor struc-
tures, when limited to vocab(Ma), is the entire module Ma.

GOLOG (Levesque et al. 1997) is a situation calculus-
based language for defining complex actions using user-
specified primitive actions. It can be described as:

δ ::= a | δ; δ | δ; δ | δ∗ | πx.δ | φ? | Z(t̄) | Proc Z(t̄)δ, (8)

where a is a primitive action, δ; δ is a sequence, δ|δ is
choice, δ∗ non-deterministic iteration, πx.δ is nondetermin-
istic choice of argument, φ? is test action, Z(t̄) is proce-
dure call, and Proc Z(t̄)δ is procedure description (that in-
cludes recursion). Constructs if φ then δ1 else δ2 and
while φ do δ are definable through the other operations.
The semantics of procedures is given through a least fixed
point construct, which is like the binary fixed point construct
µZ.α. Since iteration δ∗ is definable, (8) is a subset of the
operations in the first line of (5). Another interesting obser-
vation is that unary fixed point properties, as in the second
line of (5), were already formulated, in the context of the
situation calculus, in (De Giacomo, Ternovskaia, and Reiter
1997).

Related Work
Literature on modularity and combined problem solving is
enormous, and we do not attempt to review it here. Instead,
we discuss only the most relevant work.
A large part of this paper studies Codd’s algebra in the con-
text of Model Expansion task. These tasks are common in AI
planning, scheduling, logistics, supply chain management,
etc. Java programs, if they are of input-output type, can be
viewed as model expansion tasks, regardless of what they
do internally. ASP systems, e.g., Clasp (Gebser, Kaufmann,
and Schaub 2012) mostly solve model expansion, and so
do CP languages such as Essence (Frisch et al. 2008), as
shown in (Mitchell and Ternovska 2008). Problems solved
in ASP competitions are mostly in model expansion form.
CSP in the traditional AI form (respectively, in the homo-
morphism form) is representable by model expansion where
mappings to domain elements (respectively, homomorphism
functions) are expansion functions.
The notion of a module in (Tasharrofi and Ternovska 2011)
is mathematically the same as in the current paper. A module

159

there is a class of structures. Information propagation there
happens through equivalent vocabulary symbols. However,
the set of operations in that paper is smaller than in our paper
here (there is no recursion, only a particular kind of selection
(Feedback) is used). Moreover, connections to Codd’s rela-
tional algebra or modal temporal logic are not established
there.
The paper that originally inspired our Modular Systems
framework is (Järvisalo et al. 2009), but we developed a
model-theoretic approach and provided additional opera-
tions (in (Järvisalo et al. 2009), projections and sequen-
tial compositions are possible, but not the other operations
used here (unions, selections, recursion,etc.). Compositions
in (Lierler and Truszczyński 2015) are products only.
Unlike, e.g. dlvhex programs (Eiter et al. 2006), recursion
in our algebra is over a module variable Zi, not a predicate
variable. Thus, the purely syntactic requirement of Zi to oc-
cur positively in E is sufficient to ensure monotonicity.
Multi-Context Systems (MCSs) (Brewka and Eiter 2007)
combine knowledge bases in arbitrary languages, under ar-
bitrary semantics (that do not have to be model-theoretic)
through rules of logic programming with negation as failure,
which is a totally different phylosophy of combinations.

Conclusion
By adding information flow, we uncovered complex chore-
ographies in the stillness of the simple declarative language
of Modular Systems. There are significant benefits in study-
ing modal fragments of our algebra (i.e., algebra with in-
formation flow). Such fragments often possess good model-
theoretic and algorithmic properties. The main practical im-
plication of the duality is that traditional “dynamic” tech-
niques such as situation calculus, automata theory, temporal
logic model checking etc. can be used to answer questions
about the “static” formalism. Model checking for the dy-
namic system, for an important fragment of the logic, can be
used to solve model expansion for the “still” version. Thus,
the dynamic view opens up possibilities of new algorithms.

References
Abseher, M.; Bliem, B.; Charwat, G.; Dusberger, F.; Hecher,
M.; and Woltran, S. 2014. The D-FLAT system for dy-
namic programming on tree decompositions. In Fermé, E.,
and Leite, J., eds., Logics in Artificial Intelligence - 14th Eu-
ropean Conference, JELIA 2014, Funchal, Madeira, Portu-
gal, September 24-26, 2014. Proceedings, volume 8761 of
Lecture Notes in Computer Science, 558–572. Springer.
Abu Zaid, F.; Grädel, E.; and Jaax, S. 2014. Bisimulation
safe fixed point logic. In Goré, R.; Kooi, B. P.; and Ku-
rucz, A., eds., Advances in Modal Logic 10, invited and con-
tributed papers from the tenth conference on ”Advances in
Modal Logic,” held in Groningen, The Netherlands, August
5-8, 2014, 1–15. College Publications.
Brewka, G., and Eiter, T. 2007. Equilibria in heteroge-
neous nonmonotonic multi-context systems. In Proceedings
of the 22nd National Conference on Artificial Intelligence
(AAAI’07) - Volume 1, 385–390. AAAI Press.

Charwat, G., and Woltran, S. 2015. Efficient problem solv-
ing on tree decompositions using binary decision diagrams.
In Francesco Calimeri, Giovambattista Ianni, M. T., ed.,
Logic Programming and Nonmonotonic Reasoning, 13th In-
ternational Conference, LPNMR 2015, Lexington, Septem-
ber 27-30, 2015. Proceedings, Lecture Notes in Computer
Science. Springer.
Dawar, A., and Gurevich, Y. 2002. Fixed point logics. Bul-
letin of Symbolic Logic 8(1):65–88.
De Giacomo, G.; Ternovskaia, E.; and Reiter, R. 1997. Non-
terminating processes in the situation calculus. In Proc. of
the AAAI97 Workshop on Robots, Softbots, Immobots: The-
ories of Action, Planning and Control, 18–28.
Eiter, T.; Ianni, G.; Schindlauer, R.; and Tompits, H. 2006.
dlvhex: A prover for semantic-web reasoning under the
answer-set semantics. In 2006 IEEE / WIC / ACM Interna-
tional Conference on Web Intelligence (WI 2006), 18-22 De-
cember 2006, Hong Kong, China, 1073–1074. IEEE Com-
puter Society.
Enderton, H. B. 1972. A mathematical introduction to logic.
Academic Press.
Frisch, A. M.; Harvey, W.; Jefferson, C.; Martı́nez-
Hernández, B.; and Miguel, I. 2008. Essence: A constraint
language for specifying combinatorial problems. Con-
straints 13:268–306.
Gebser, M.; Kaufmann, B.; and Schaub, T. 2012. Conflict-
driven answer set solving: From theory to practice. Artificial
Intelligence 187-188:52–89.
Grädel, E.; Kolaitis, P. G.; Libkin, L.; Marx, M.; Spencer,
J.; Vardi, M.; Venema, Y.; and Weinstein, S. 2007. Finite
Model Theory and Applications. Springer.
Järvisalo, M.; Oikarinen, E.; Janhunen, T.; and Niemelä, I.
2009. A module-based framework for multi-language con-
straint modeling. In Proceedings of the 10th International
Conference on Logic Programming and Non-monotonic
Reasoning (LPNMR’09), volume 5753 of Lecture Notes in
Computer Science (LNCS), 155–168. Springer-Verlag.
Levesque, H.; Reiter, R.; Lespérance, Y.; Lin, F.; and Scherl,
R. 1997. GOLOG: A logic programming language for dy-
namic domains. Journal of Logic Programming 31:59–84.
Libkin, L. 2004. Elements of Finite Model Theory. Springer
Verlag.
Lierler, Y., and Truszczyński, M. 2015. An abstract view on
modularity in knowledge representation. In Proceedings of
the 27th AAAI Conference on Artificial Intelligence.
Mitchell, D. G., and Ternovska, E. 2005. A framework
for representing and solving NP search problems. In Proc.
AAAI’05, 430–435.
Mitchell, D. G., and Ternovska, E. 2008. Expressiveness
and abstraction in ESSENCE. Constraints 13(2):343–384.
Reiter, R. 2001. Knowledge in Action: Logical Foundations
for Specifying and Implementing Dynamical Systems. MIT
Press.
Robertson, N., and Seymour, P. D. 1984. Graph minors. III.
planar tree-width. J. Comb. Theory, Ser. B 36(1):49–64.

160 static and dynamic views on the algebra of modular systems

Tasharrofi, S., and Ternovska, E. 2011. A semantic account
for modularity in multi-language modelling of search prob-
lems. In Proceedings of the 8th International Symposium on
Frontiers of Combining Systems (FroCoS), 259–274.

161

A New Approach for Revising Logic Programs

Zhiqiang Zhuang1 James Delgrande2 Abhaya Nayak3 Abdul Sattar1
1 Institute for Integrated and Intelligent Systems, Griffith University, Australia

2 School of Computing Science, Simon Fraser University, Canada
3 Department of Computing, Macquarie University, Australia

Abstract

Belief revision has been studied mainly with respect to back-
ground logics that are monotonic in character. In this paper
we study belief revision when the underlying logic is non-
monotonic instead—an inherently interesting problem that is
under explored. In particular, we will focus on the revision of
a body of beliefs that is represented as a logic program un-
der the answer set semantics, while the new information is
also similarly represented as a logic program. Our approach
is driven by the observation that unlike in a monotonic set-
ting where, when necessary, consistency in a revised body of
beliefs is maintained by jettisoning some old beliefs, in a non-
monotonic setting consistency can be restored by adding new
beliefs as well. We will define a syntactic revision function
and subsequently provide representation theorem for charac-
terising it.

Introduction
The ability to change one’s beliefs when presented with new
information is crucial for any intelligent agent. In the area
of belief change, substantial effort has been made towards
the understanding and realisation of this process. Tradition-
ally, it is assumed that the agent’s reasoning is governed by a
monotonic logic. For this reason, traditional belief change is
inapplicable when the agent’s reasoning is non-monotonic.
Our goal in this research program is to extend belief base
(Hansson 1999) approaches in belief revision to nonmono-
tonic setting. In this paper, we focus on disjunctive logic pro-
grams, as a well-studied and well-known approach to non-
monotonic reasoning that also has efficient implementations.

Much, if not most, of our day-to-day reasoning involves
non-monotonic reasoning. To illustrate issues that may arise,
consider the following example. In a university, professors
generally teach, unless they have an administrative appoint-
ment. Assume we know that John is a professor. Since most
faculty do not have an administrative appointment, and there
is no evidence that John does, we conclude that he teaches.
This reasoning is a classical form of non-monotonic reason-
ing, namely using the closed world assumption. It can be
represented by the following logic program under the an-

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

swer set semantics.

Teach(X)← Prof(X), not Admin(X). (1)
Prof(John)← . (2)

The answer set {Prof(John), T each(John)} for this
logic program corresponds exactly to the facts we can con-
clude.

Suppose we receive information that John does not teach,
which we can represent by the rule

← Teach(John). (3)

Now our beliefs about John are contradictory; and it is not
surprising that the logic program consisting of rules (1) – (3)
has no answer set. For us or any intelligent agent in this sit-
uation to function properly, we need a mechanism to resolve
this inconsistency. This is a typical belief revision problem;
however, the classical (AGM) approach can not be applied,
as we are reasoning non-monotonically.

It is not hard to suggest possible causes of the inconsis-
tency and to resolve it. It could be that some of our beliefs
are wrong; perhaps professors with administrative duties
may still need to do teaching or perhaps John is not a profes-
sor. Thus we can restore consistency by removing rule (1) or
(2). Alternatively and perhaps more interestingly, it could be
that assuming that John is not an administrative staff via the
absence of evidence is too adventurous; that is he may in-
deed be an administrative staff member but we don’t know
it. Thus we can also restore consistency by adding the miss-
ing evidence of John being an administrative staff member
by

Admin(John)← . (4)

The second alternative highlights the distinction for belief
revision in monotonic and non-monotonic settings. In the
monotonic setting, an inconsistent body of knowledge will
remain inconsistent no matter how much extra information
is supplied. On the other hand, in the non-monotonic set-
ting, inconsistency can be resolved by either removing old
information, or adding new information, or both. Therefore,
belief revision functions in a non-monotonic setting should
allow a mixture of removal and addition of information for
inconsistency-resolution. In this paper, we will define one
such revision functions for disjunctive logic programs under
the answer set semantics.

163

The revision function is called slp-revision and is a be-
lief base revision which takes syntactic information into ac-
count. In revising P by Q, an slp-revision function first ob-
tains a logic program R that is consistent with Q and differs
minimally from P , then combines R with Q. For example,
if P = {(1), (2)} and Q = {(3)}, then R could be {(1)}
(i.e., resolving inconsistency by removing (2)); {(2)} (i.e.,
resolving inconsistency by removing (1)); or {(1), (2), (4)}
(i.e., resolving inconsistency by adding (4)).

The next section gives logical preliminaries. The follow-
ing one develop our approach to slp-revision in which we
provide postulates, a semantic construction, and a represen-
tation result. This is followed by a comparison to other work,
and a brief conclusion.

Preliminary Considerations
In this paper, we consider only fully grounded disjunctive
logic programs. That is variables in program rules are re-
placed by the set of their ground instances. Thus a logic pro-
gram (or program for short) here is a finite set of rules of the
form:

a1; . . . ; am ← b1, . . . , bn, not c1, . . . , not co

where m,n, o ≥ 0, m+n+ o > 0, and ai, bj , ck ∈ A forA
a finite set of propositional atoms. Connective not is called
default negation. We denote the set of all logic programs
by P . For each rule r, let H(r) = {a1, . . . , an}, B+(r) =
{b1, . . . , bm}, and B−(r) = {c1, . . . , co}. The letters P and
Q are used to denote a logic program throughout the paper.

An interpretation is represented by the subset of atoms in
A that are true in the interpretation. A classical model of a
program P is an interpretation in which all rules of P are
true according to the standard definition of truth in propo-
sitional logic, and where default negation is treated as clas-
sical negation. The set of classical models of P is denoted
as Mod(P). Given an interpretation Y , we write Y |= P to
mean Y is a classical model of P . The reduct of a program
P with respect to an interpretation Y , denoted PY , is the set
of rules:

{H(r)← B+(r) | r ∈ P,B−(r) ∩ Y = ∅}.
An answer set Y of P is a subset-minimal classical model
of PY . The set of all answer set of P is denoted as AS(P).

An SE interpretation (Turner 2003) is a pair (X,Y) of
interpretations such that X ⊆ Y ⊆ A. The set of all SE in-
terpretations (over A) is denoted SE . The letters M and N
are used to denote a set of SE interpretations throughout the
paper. An SE interpretation is an SE model of a program P if
Y |= P and X |= PY . The set of all SE models of P is de-
noted as SE(P). SE models are proposed to capture strong
equivalence (Lifschitz et al. 2001) between programs that is
SE(P) = SE(Q) iff P and Q are strongly equivalent, thus
they contain more informations than answer sets.

The following two properties of SE models (Turner 2003)
are crucial to this paper:

1. Y ∈ AS(P) iff (Y, Y) ∈ SE(P) and there is no
(X,Y) ∈ SE(P) such that X ⊂ Y .

2. (Y, Y) ∈ SE(P) iff Y ∈Mod(P).

So SE(P) 6= ∅ iff Mod(P) 6= ∅ but SE(P) 6= ∅ does
not imply AS(P) 6= ∅. This gives rise to two notions of
consistency.

Definition 1. P is consistent iff AS(P) 6= ∅ and P is m-
consistent1 iff SE(P) 6= ∅.
It is clear from the SE model properties that consistency im-
plies m-consistency; m-inconsistency implies inconsistency.
In other words, a consistent program is m-consistent but not
vice versa.

In subsequent sections, we will need to describe the dif-
ference between two logic programs. For this purpose, we
use the symmetric difference operator 	 which is defined as

X 	 Y = (X \ Y) ∪ (Y \X)

for any sets X and Y .

SLP-Revision Functions
In this section, we give a syntax-based revision function
∗ : P × P 7→ P for revising one logic program by an-
other. The function takes a logic program P called the orig-
inal logic program and a logic program Q called the re-
vising logic program, and returns another logic program
P ∗ Q called the revised logic program. Following AGM
belief revision, we want to have Q contained in P ∗Q (i.e.,
Q ⊆ P ∗Q), P ∗Q is consistent whenever possible, and that
as much of P as consistently possible is contained in P ∗Q.

Clearly, a key issue in defining ∗ is to deal with the pos-
sible inconsistency between Q and P . As illustrated in the
teaching example, one means of ensuring that P ∗Q is con-
sistent is to remove a minimal set of beliefs from P so that
adding Q to the result is consistent. Of course there may
be more than one way to remove beliefs from P . Following
this intuition, we obtain all maximal subsets of P that are
consistent with Q, which we call the s-removal compatible
programs of P with respect to Q.

Definition 2. The set of s-removal compatible programs of
P with respect toQ, denoted P ↓ Q, is such thatR ∈ P ↓ Q
iff
1. R ⊆ P ,
2. R ∪Q is consistent, and
3. if R ⊂ R′ ⊆ P , then R′ ∪Q is inconsistent.

The notion of s-removal compatible programs is not
new, classical revision functions (Alchourrón et al. 1985;
Hansson 1993) are based on more or less the same notion.
The difference is that this notion alone is sufficient to cap-
ture the inconsistency-resolution strategy of classical belief
revision, but there is more that one can do in non-monotonic
belief revision.

In our non-monotonic setting, we are able to express as-
sumptions (i.e., negation as failure) and to reason with them.
Earlier, we assumed John is not an administrator, in the ab-
sence of evidence to the contrary. With this, we came to the
conclusion that he has to teach. Consequently, if we learn

1“m” stands for “monotonic” which indicates that the notion of
m-consistency is based on a monotonic characterisation (i.e., SE
models) for logic programs.

164 a new approach for revising logic programs

that John does not teach, as in our example, one way of re-
solving this inconsistency is by adding information so that
our assumption does not hold. Following this intuition, we
obtain all the minimal supersets of P that are consistent with
Q, which we call the s-expansion compatible program of P
with respect to Q.
Definition 3. The set of s-expansion compatible programs
of P with respect to Q, denoted P ↑ Q, is such that R ∈
P ↑ Q iff
1. P ⊆ R,
2. R ∪Q is consistent, and
3. if P ⊆ R′ ⊂ R, then R′ ∪Q is inconsistent.

Since the s-expansion and s-removal compatible pro-
grams are consistent with Q and are obtained by removing
or adding minimal sets of rules from or to P , the union of
Q with any of these sets is consistent and comprises a least
change made to P in order to achieve consistency. These
programs clearly should be candidates for forming the re-
vised logic program P ∗ Q; however, they do not form the
set of all candidates. In particular, we can obtain a program
that differs the least from P and is consistent with Q by re-
moving some beliefs of P and at the same time adding some
new beliefs to P . Thus we consider all those logic programs
that differ the least from P and are consistent with Q; these
are called the s-compatible programs of P with respect to
Q.
Definition 4. The set of s-compatible programs of P with
respect to Q, denoted P l Q, is such that R ∈ P l Q iff
1. R ∪Q is consistent and
2. if P 	R′ ⊂ P 	R, then R′ ∪Q is inconsistent.
For example, let P = {a← b, not c., b., e← f, not g., f.}
and Q = {← a.,← e.}. Then P ∪ Q is inconsistent since
a and e can be concluded from P but they contradict the
rules of Q. To resolve the inconsistency via making the least
change to P , we could remove b ← from P (which elimi-
nates the contradiction about a) and add g ← to P (which
eliminates the contradiction about e). The program thus ob-
tained (i.e., (P \ {b.}) ∪ {g.}) is a s-compatible program in
P l Q.

It is obvious, but worth noting that the notion of s-
compatible program subsumes those of s-removal and s-
expansion compatible programs. In the above example, P l
Q also contains P \ {b., f.} and P ∪ {c., g.}, which are re-
spectively an s-removal and an s-expansion compatible pro-
gram of P with respect to Q.
Proposition 1. (P ↑ Q) ∪ (P ↓ Q) ⊆ P l Q.

There are cases in which we cannot resolve inconsis-
tency by only adding new beliefs which means the set of
s-expansion compatible programs is empty. For example, if
P = {a.} and Q = {← a.}, then P ∪ Q is inconsistent
and we cannot restore consistency without removing a ←
from P . In these cases, the inconsistency is due to contradic-
tory facts that can be concluded without using any reasoning
power beyond that of classical logic. Clearly, the inconsis-
tency is of a monotonic nature, that is, in our terminology,
m-inconsistency.
Proposition 2. If P ∪Q is m-inconsistent, then P ↑ Q = ∅.

So far, we have identified the candidates for forming
P ∗ Q. It remains to pick the “best” one. Such extralogi-
cal information is typically modelled by a selection function,
which we do next.
Definition 5. A function γ is a selection function for P iff
for any program Q, γ(P l Q) returns a single element of
P l Q whenever P l Q is non-empty; otherwise it returns
P .
The revised logic program P ∗Q is then formed by combin-
ingQwith the s-compatible program picked by the selection
function for P . We call the function ∗ defined in this way a
slp-revision function for P .
Definition 6. A function ∗ is a slp-revision function for P iff

P ∗Q = γ(P l Q) ∪Q
for any program Q, where γ is a selection function for P .

In classical belief revision, multiple candidates maybe
chosen by a selection function, and their intersection is com-
bined with the new belief to form the revision result. There,
a selection function that picks out a single element is called
a maxichoice function (Alchourrón et al. 1985). In clas-
sical logic, maxichoice selection functions leads to unde-
sirable properties for belief set revision but not for belief
base revision. In our non-monotonic setting, picking mul-
tiple candidates does not make sense, as intersection of s-
compatible programs may not be consistent with the revis-
ing program. For example, let P = {a← not b, not c.} and
Q = {← a.}. We can restore consistency of P with Q by,
for instance, adding the rule b← to P which corresponds to
the s-compatible program P∪{b.} or by adding the rule c←
which corresponds to the s-compatible program P ∪ {c.}.
However, the intersection of the two s-compatible programs
is inconsistent with Q.

We turn next to properties of slp-revision functions. Con-
sider the following set of postulates where ∗ : P × P 7→ P
is a function.

(s∗s) Q ⊆ P ∗Q
(s∗c) If Q is m-consistent, then P ∗Q is consistent
(s∗f) If Q is m-inconsistent, then P ∗Q = P ∪Q
(s∗rr) If R 6= ∅ and R ⊆ P \ (P ∗Q), then

(P ∗Q) ∪R is inconsistent
(s∗er) If E 6= ∅ and E ⊆ (P ∗Q) \ (P ∪Q), then

(P ∗Q) \ E is inconsistent
(s∗mr) If R 6= ∅, R ⊆ P \ (P ∗Q),

E 6= ∅ and E ⊆ (P ∗Q) \ (P ∪Q), then
((P ∗Q) ∪R) \ E is inconsistent

(s∗u) If P l Q = P l R, then
P \ (P ∗Q) = P \ (P ∗R) and
(P ∗Q) \ (P ∪Q) = (P ∗R) \ (P ∪R)

(s∗s) (Success) states that a revision is always successful
in incorporating the new beliefs. (s∗c) (Consistency) states
that a revision ensures consistency of the revised logic pro-
gram whenever possible. In the monotonic setting, a revi-
sion results in inconsistency only when the new beliefs are
themselves inconsistent. This is not the case in the non-
monotonic setting. For example, consider the revision of
P = {a.} by Q = {b ← not b}. Although Q is incon-
sistent, we have P ∪ {b.} as a s-compatible program of P

165

with respect to Q. Thus we can have P ∪ {b.} ∪ Q as the
revised logic program, which contains Q and is consistent.
Here, a revision results in inconsistency only when the re-
vising logic program is m-inconsistent. In such a case, (s∗f)
(Failure) states that the revision corresponds to the union of
the original and revising logic program.

(s∗rr) (Removal Relevance) states that if some rules are
removed from the original logic program for the revision,
then adding them to the revised logic program results in in-
consistency. It captures the intuition that nothing is removed
unless its removal contributes to making the revised logic
program consistent. (s∗er) (Expansion Relevance) states that
if some new rules other than those in the revising logic pro-
gram are added to the original logic program for the revi-
sion, then removing them from the revised logic program
causes inconsistency. It captures the intuition that nothing
is added unless adding it contributes to making the revised
logic program consistent. (s∗mr) (Mixed Relevance) states
that if some rules are removed from the original logic pro-
gram and some new rules other than those in the revising
logic program are added to the original logic program for the
revision, then adding back the removed ones and removing
the added ones result in inconsistency of the revised logic
program. Its intuition is a mixture of the two above. Note that
putting (s∗rr) and (s∗er) together does not guarantee (s∗mr),
nor the reverse. In summary, these three postulates express
the necessity of adding and/or removing certain belief for re-
solving inconsistency and hence to accomplish a revision. In
classical belief revision, inconsistency can only be resolved
by removing old beliefs; the necessity of removing particu-
lar beliefs is captured by the Relevance postulate (Hansson
1993).2 The three postulates are the counterparts of Rele-
vance in our non-monotonic setting, and we need all three
of them to deal respectively with addition, removal, and a
mixture of addition and removal.

Finally, (s∗u) (Uniformity) states the condition under
which two revising logic programsQ andR trigger the same
changes to the original logic program P . That is the rules re-
moved from P (i.e., P \ (P ∗ Q)) and the rules added to P
(i.e., (P ∗Q) \ (P ∪Q)) for accommodating Q are identical
to those for accommodatingR. Certainly havingQ andR be
strongly equivalent (i.e., SE(Q) = SE(R)) is a sufficient
condition. However, it is too strong a requirement. Suppose
P = {← a.}, Q = {a.}, and R = {a ← b., b.}. Then the
minimal change to P we have to made to accommodate Q
and R are the same, that is we remove ← a. However Q
and R are not strongly equivalent, even though they incur
the same change to P . The essential point of this example is
that instead of a global condition like strong equivalence, we
need a condition that is local to the original logic program
P . Unfortunately, it seems there is no existing notion in the
logic programming literature that captures this local condi-
tion. Thus we use our newly defined notion of s-compatible
programs and come up with the local but more appropriate
condition in (s∗u).

2If ψ ∈ K and ψ 6∈ K ∗ φ, then there is some K′ such that
K ∗ φ ⊆ K′ ⊆ K ∪ {φ}, K′ is consistent but K′ ∪ {ψ} is
inconsistent.

We can show that these postulates are sufficient to char-
acterise all slp-revision functions.

Theorem 1. A function ∗ is a slp-revision function iff it sat-
isfies (s∗s), (s∗c), (s∗f), (s∗rr), (s∗er), (s∗mr), and (s∗u).

Comparisons with Existing Approaches
There has been much work on belief revision for logic pro-
grams. The seminal work of Delgrande et al (2013b) gener-
alises Satoh’s (1988) and Dalal’s (1988) revision operators
to logic programs. Significantly, they bring SE model into
the picture. They do not work with answer sets as a basis for
revision, but rather they base their definitions directly on SE
models. The work has inspired several other SE model ap-
proaches. Schwind and Inoue (2013) provide a constructive
characterisation for the revision operators in (Delgrande et
al. 2013b). Delgrande et al (2013a) adapt the model-based
revision of Katsuno and Mendelzon (1992) to logic pro-
grams and provide a representation theorem. Finally, Bin-
newies et al (2015) provide a variant of partial meet revision
and contraction for logic programs.

Firstly, the SE model approaches are essentially belief
set revision whereas our slp-revision is a belief base one.
Secondly and more importantly, these approaches assume a
weaker notion of consistency, that is m-consistency. For this
reason, some contradictions will not be dealt with in these
approaches. For instance, the contradictory rule a ← not a
is m-consistent thus is considered to be an acceptable state
of belief. Also in our teaching example, as the program con-
sisting of rules (1) – (3) is m-consistent, no attempt will be
made to resolve the contradiction about John’s teaching duty
by the SE model approaches. Therefore for application sce-
narios in which such contradictions can not be tolerant, our
llp-revision function is clearly a better choice.

Apart from the SE model approaches, Krümpelmann
and Kern-Isberner (2012) provide a revision function for
logic programs that originates from Hansson’s semi-revision
(Hansson 1997). Since they assume the same notion of con-
sistency as ours, all the above mentioned contradictions will
be resolved in their approach.

As we have noted, classical belief revision is defined
for monotonic setting, not for non-monotonic ones. Incon-
sistency can be caused by wrong assumptions in the non-
monotonic setting but not in the monotonic setting. Such
causes are not considered in (Krümpelmann and Kern-
Isberner 2012). Consequently, their approach only support
one of the many possible inconsistency-resolution strate-
gies we have developed. Specifically, in (Krümpelmann and
Kern-Isberner 2012), inconsistency can be resolved only
by removing old beliefs; this strategy is captured by a
notion analogous to s-removal compatible programs. The
inconsistency-resolution strategies captured by the notion of
s-expansion compatible program and s-compatible program
in general are not considered.

Conclusion and Future Work
Depending on the application scenario, the logic govern-
ing an agent’s beliefs could be either monotonic or non-
monotonic. Traditional belief revision assumes that an agent

166 a new approach for revising logic programs

reasons monotonically; therefore, by definition, it is applica-
ble to such situations only. Here we have aimed to provide a
belief revision framework for situations in which the agent
reasons non-monotonically. To this end, we defined a belief
revision function for disjunctive logic programs under the
answer set semantics.

Inconsistency-resolution is an essential task for belief re-
vision. However, the strategies used in traditional belief re-
vision functions are limited to situations when the agent rea-
sons monotonically. With a logic program we have the lux-
ury of making assumptions via lack of contrary evidence,
and we can deduce certain facts from such assumptions.
Thus if a set of beliefs is inconsistent, then one possible
cause is that we made the wrong assumption. In such cases,
we can resolve the inconsistency by adding some new rules
so that the assumption can no longer be made. Such a cause
of inconsistency and the associated inconsistency-resolution
strategy is beyond the scope of traditional belief revision, but
is crucial for non-monotonic belief revision. We argue that
this rationale, which is encoded in our belief revision func-
tion, captures the fundamental difference between mono-
tonic and non-monotonic belief revision.

This paper then has explored belief base revision in the
non-monotonic setting of disjunctive logic programs. Note
that the characterising postulates of the base revision are for-
mulated in terms of set-theoretic notions (e.g., subsets, set
differences); the only logical notion required is consistency.
Moreover the key idea, namely the notion of s-compatible
programs, is also based on the same set-theoretic and logi-
cal notions. These notions are present in all non-monotonic
settings. In future work we propose to extend the base re-
vision to a general approach to belief revision in arbitrary
non-monotonic settings.

Appendix: Proof of Results
In this appendix, we give the proof for the main results.

Proof for Proposition 2
Let P and Q are logic programs. Suppose P ∪ Q is m-

inconsistent. We need to show P ↑ Q = ∅.
Since P ∪ Q is m-inconsistent, we have SE(P) ∩

SE(Q) = ∅. By the definition of s-expansion compatible
program, any element in P ↑ Q has to be a superset of P
and consistent with Q. However, for any superset R of P ,
we have SE(R) ⊆ SE(P). Thus SE(R) ∩ SE(Q) = ∅
which implies R ∪Q is m-inconsistent.

Proof for Theorem 1
For one direction, suppose ∗ is a slp-revision function

for P and the associated selection function is γ. We need
to show ∗ satisfies (s∗s), (s∗c), (s∗f), (s∗rr), (s∗er), (s∗mr),
and (s∗u). (s∗s), (s∗c), and (s∗f) follow immediately from
the definition of slp-revision functions and compatible pro-
grams.

(s∗rr): Suppose there is a set R such that R 6= ∅ and R ⊆
P \ (P ∗Q). By the definition of slp-revision, we have P ∗
Q = γ(P l Q) ∪Q, hence P \ (γ(P l Q) ∪Q) 6= ∅ which
implies γ(P l Q) 6= P . Then it follows from the definition

of selection function that P l Q 6= ∅ and γ(P l Q) ∈ P l
Q. Let γ(P l Q) = X . Then (P ∗Q)∪R = X∪Q∪R. Since
∅ 6= R ⊆ P , we have ((X ∪ R) 	 P) ⊂ (X 	 P). By the
definition of compatible program, X ∪R∪Q is inconsistent
that is (P ∗Q) ∪R is inconsistent.

(s∗er): Suppose there is a set E such that E 6= ∅ and
E ⊆ (P ∗ Q) \ (P ∪ Q). By the definition of slp-revision,
we have P ∗ Q = γ(P l Q) ∪ Q, hence (γ(P l Q) ∪
Q) \ (P ∪ Q) 6= ∅ which implies γ(P l Q) 6= P . Then
it follows from the definition of selection function that P l
Q 6= ∅ and γ(P l Q) ∈ P l Q. Let γ(P l Q) = X . Then
(P ∗Q)\E = (X∪Q)\E. SinceE∩P = ∅ and ∅ 6= E ⊆ X ,
((X \E)	P) ⊂ (X 	P). By the definition of compatible
program, (X \E)∪Q is inconsistent. Then sinceE∩Q = ∅,
we have (X \E)∪Q = (X ∪Q) \E = (P ∗Q) \E. Thus
(P ∗Q) \ E is inconsistent.

(s∗mr): Can be proved by combining the proving method
for (s∗rr) and (s∗er).

(s∗u): Suppose P l Q = P l R. Then γ(P l Q) =
γ(P l R). If P l Q = P l R = ∅, then by the definition
of slp-revision P ∗ Q = P ∪ Q and P ∗ R = P ∪ R. Thus
P \ (P ∗Q) = P \ (P ∗R) = ∅ and (P ∗Q) \ (P ∪Q) =
(P ∗ R) \ (P ∪ R) = ∅. So suppose P l Q = P l R 6= ∅
and let X = γ(P l Q) = γ(P l R). By the definition of
slp-revision, we have P \ (P ∗Q) = P \ (X ∪Q). Assume
∅ 6= P ∩Q 6⊆ X . Then since X ∪ (P ∩Q) is consistent with
Q and (X ∪ (P ∩Q))	P ⊂ X 	P , X is not a compatible
program, a contradiction! Thus P ∩Q = ∅ or P ∩Q ⊆ X .
In either case we have by set theory that P \ (P ∗ Q) =
P \ (X ∪Q) = P \X . It can be shown in the same manner
that P \(P ∗R) = P \(X∪R) = P \X . Thus P \(P ∗Q) =
P \ (P ∗R). Again by the definition of slp-revision, we have
(P ∗Q)\ (P ∪Q) = (X ∪Q)\ (P ∪Q) = X \P . Similarly
(P ∗ R) \ (P ∪ R) = (X ∪ R) \ (P ∪ R) = X \ P . Thus
(P ∗Q) \ (P ∪Q) = (P ∗R) \ (P ∪R).

For the other direction, suppose ∗ is a function that satis-
fies (s∗s), (s∗c), (s∗f), (s∗rr), (s∗er), (s∗mr), and (s∗u). We
need to show ∗ is a slp-revision function.

Let γ be defined as:

γ(P l Q) = ((P ∗Q) ∩ P) ∪ ((P ∗Q) \Q)

for all Q. It suffices to show γ is a selection function for P
and P ∗Q = γ(P l Q) ∪Q.

Part 1: For γ to be a selection function, it must be a
function. Suppose P l Q = P l R. Then (s∗u) implies
P \ (P ∗ Q) = P \ (P ∗ R) and (P ∗ Q) \ (P ∪ Q) =
(P ∗R)\(P∪R). Since P = (P \(P ∗Q))∪((P ∗Q)∩P) =
(P \(P ∗R))∪((P ∗R)∩P), P \(P ∗Q) = P \(P ∗R) im-
plies (P ∗Q)∩P = (P ∗R)∩P . Thus (P ∗Q)\ (P ∪Q) =
(P ∗ R) \ (P ∪ R) implies ((P ∗ Q) ∩ P) ∪ ((P ∗ Q) \
(P ∪ Q)) = ((P ∗ R) ∩ P) ∪ ((P ∗ R) \ (P ∪ R)). Then
by set theory, we have ((P ∗ Q) ∩ P) ∪ ((P ∗ Q) \ Q) =
((P ∗R) ∩ P) ∪ ((P ∗R) \R). Finally, it follows from the
definition of γ that γ(P l Q) = γ(P l R).

If P l Q = ∅, then we have to show γ(P l Q) = P .
P l Q = ∅ implies Q is m-inconsistent, hence it follows
from (s∗f) that P ∗ Q = P ∪ Q. Then by the definition
of γ, γ(P l Q) = ((P ∗ Q) ∩ P) ∪ ((P ∗ Q) \ Q) =
((P ∪Q) ∩ P) ∪ ((P ∪Q) \Q) = P .

167

If P l Q 6= ∅, then we have to show γ(P l Q) ∈ P l Q.
Since P l Q 6= ∅, Q is m-consistent. Then (s∗c) implies
P ∗Q is consistent. Since γ(P l Q)∪Q = ((P ∗Q)∩P)∪
((P ∗ Q) \ Q) ∪ Q = P ∗ Q, γ(P l Q) ∪ Q is consistent.
Assume there is X s.t. X ∪ Q is consistent and X 	 P ⊂
γ(P l Q)	 P . Then we have three cases:

Case 1, there is R s.t. ∅ 6= R ⊆ P \ γ(P l Q), and
X = γ(P l Q) ∪ R: If R ∩ Q = ∅, then since γ(P l
Q)∪Q = P ∗Q,R∩(P ∗Q) = ∅. Then it follows from (s∗rr)
that (P ∗Q)∪R is inconsistent. SinceX∪Q = (P ∗Q)∪R,
X ∪ Q is inconsistent, a contradiction! If R ∩ Q 6= ∅, then
since R ⊆ P , R ∩ P ∩ Q 6= ∅. Since (s∗s) implies Q ⊆
P ∗ Q, we have Q ∩ P ⊆ (P ∗ Q) ∩ P , which implies
R∩((P∗Q)∩P) 6= ∅. Then since ((P∗Q)∩P) ⊆ γ(P l Q),
γ(P l Q) ∩ R 6= ∅, a contradiction! Thus R ∩Q 6= ∅ is an
impossible case.

Case 2, there is E s.t. E ∩ P = ∅, ∅ 6= E ⊆ γ(P l Q),
andX = γ(P l Q)\E: Then E ⊆ γ(P l Q)∪Q = P ∗Q.
IfE∩Q = ∅, then (s∗er) implies (P ∗Q)\E is inconsistent.
Since X ∪Q = γ(P l Q) \ E ∪Q = (P ∗Q) \ E, X ∪Q
is inconsistent, a contradiction! If E ∩ Q 6= ∅, then E 6⊆
(P ∗Q)\Q. SinceE∩P = ∅, we haveE∩(P ∗Q)∩P = ∅.
Thus E 6⊆ ((P ∗ Q) ∩ P) ∪ ((P ∗ Q) \ Q) = γ(P l Q), a
contradiction! Thus E ∩Q 6= ∅ is an impossible case.

Case 3, there are R and E s.t. ∅ 6= R ⊆ P , R ∩ γ(P l
Q) = ∅, E ∩ P = ∅, ∅ 6= E ⊆ γ(P l Q), and X = (γ(P l
Q) ∪ R) \ E: Then we can show as in Case 1 and 2 that
R∩P ∗Q = ∅ andE ⊆ P ∗Q. IfR∩Q = ∅ andE∩Q = ∅,
then (s∗mr) implies ((P ∗Q)∪R) \E is inconsistent. Thus
X ∪Q = ((γ(P l Q)∪R)\E)∪Q = ((P ∗Q)∪R)\E is
inconsistent, a contradiction! Also we can show as in Case
1 and 2 that that R ∩Q = ∅ and E ∩Q = ∅ are impossible
cases.

Part 2: By set theory, γ(P l Q) ∪Q = ((P ∗Q) ∩ P) ∪
((P ∗Q) \Q) ∪Q = ((P ∗Q) ∩ P) ∪ (P ∗Q) = P ∗Q.

References
Carlos E. Alchourrón, Peter Gärdenfors, and David Makin-
son. On the logic of theory change: Partial meet contrac-
tion and revision functions. The Journal of Symbolic Logic,
50(2):510–530, 1985.
Sebastian Binnewies, Zhiqiang Zhuang, and Kewen Wang.
Partial meet revision and contraction in logic programs. In
Proceedings of the 29th AAAI Conference on Artificial Intel-
ligence (AAAI-2015), 2015.
Mukesh Dalal. Investigations into a theory of knowledge
base revision. In Proceedings of the 7th National Confer-
ence on Artificial Intelligence (AAAI-1988), pages 475–479,
1988.
James P. Delgrande, Pavlos Peppas, and Stefan Woltran.
Agm-style belief revision of logic programs under answer
set semantics. In Proceedings of the 12th International Con-
ference on Logic Programming and Nonmonotonic Reason-
ing (LPNMR-2013), pages 264–276, 2013.
James P. Delgrande, Torsten Schaub, Hans Tompits, and Ste-
fan Woltran. A model-theoretic approach to belief change in

answer set programming. ACM Trans. Comput. Log., 14(2),
2013.
Sven Ove Hansson. Reversing the Levi Identity. Journal of
Philosophical Logic, 22(6):637–669, 1993.
Sven Ove Hansson. Semi-revision. Journal of Applied Non-
Classical Logics, 7(1-2):151–175, 1997.
Sven Ove Hansson. A Textbook of Belief Dynamics Theory
Change and Database Updating. Kluwer, 1999.
Hirofumi Katsuno and Alberto O. Mendelzon. Propositional
knowledge base revision and minimal change. Artificial In-
telligence, 52(3):263–294, 1992.
Patrick Krümpelmann and Gabriele Kern-Isberner. Belief
base change operations for answer set programming. In
Logics in Artificial Intelligence - 13th European Conference,
JELIA 2012, Toulouse, France, September 26-28, 2012. Pro-
ceedings, pages 294–306, 2012.
Vladimir Lifschitz, David Pearce, and Agustı́n Valverde.
Strongly equivalent logic programs. ACM Trans. Comput.
Logic, 2(4):526–541, 2001.
Ken Satoh. Nonmonotonic reasoning by minimal belief re-
vision. In Proceedings of the International Conference on
Fifth Generation Computer Systems, pages 455–462, 1988.
Nicolas Schwind and Katsumi Inoue. Characterization the-
orems for revision of logic programs. In Proceedings of the
12th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR-2013), pages 485–498,
2013.
Hudson Turner. Strong equivalence made easy: Nested ex-
pressions and weight constraints. Theory Pract. Log. Pro-
gram., 3(4):609–622, 2003.

168 a new approach for revising logic programs

169

Forschungsberichte
der Fakultät für Informatik

der Technischen Universität Dortmund

ISSN 0933-6192

Anforderungen an:
Dekanat Informatik | TU Dortmund

D-44221 Dortmund

	Preface
	Acknowledgments
	Contents
	Invited Talks
	Laura Giordano: Reasoning about typicality in preferentialdescription logics
	Leon van der Torre: Arguing about obligations and permissions
	Regular Papers
	Ringo Baumann, Thomas Linsbichler and Stefan Woltran: Verifiability of Argumentation Semantics
	Katarina Britz, Ivan Varzinczak: Preferential Modalities Revisited
	Kristijonas Cyras, Francesca Toni: Properties of ABA+ forNon-Monotonic Reasoning
	Zoltan Esik: Equational properties of stratified least fixed points
	Marco Garapa, Eduardo Fermé, Maurício D. L. Reis: Studies on Brutal Contraction and Severe Withdrawal: Preliminary Report
	Valentina Gliozzi: A strengthening of rational closure in DLs:reasoning about multiple aspects
	Adrian Haret, Jean-Guy Mailly and Stefan Woltran: DistributingKnowledge into Simple Bases
	Jesse Heyninck, Christian Straßer: Relations between assumption-based approaches in nonmonotonic logic and formal argumentation
	Aaron Hunter: Ordinal Conditional Functions for NearlyCounterfactual Revision
	Thomas Linsbichler, Jörg Pührer, Hannes Strass: CharacterizingRealizability in Abstract Argumentation
	Jean-Guy Mailly: Using Enthymemes to Fill the Gap betweenLogical Argumentation and Revision of Abstract Argumentation Frameworks
	Özgür L. Özçep: Iterated Ontology Revision by Reinterpretation
	Adrian Paschke and Tara Athan: Law Test Suites for Semantically-Safe Rule Interchange
	Gavin Rens: On Stochastic Belief Revision and Update and their Combination
	Gavin Rens, Thomas Meyer, Giovanni Casini: Revising Incompletely Specified Convex Probabilistic Belief Bases
	Zeynep G. Saribatur and Thomas Eiter: Reactive Policies withPlanning for Action Languages
	Eugenia Ternovska: Static and Dynamic Views on the Algebra of Modular Systems
	Zhiqiang Zhuang, James Delgrande, Abhaya Nayak, Abdul Sattar: A New Approach for Revising Logic Programs

